Skip to main content

Chemical Bonding in Silicates

  • Chapter
Advanced Mineralogy
  • 717 Accesses

Abstract

How the nature of chemical bonds in silicates governs their structural and physical properties has long been of interest. Experimentally, the bonding in silicates can be investigated using spectroscopy and by mapping electron density distributions with X-ray and neutron diffraction. Since the 1970s, there has also been much effort directed towards the study of bonding from first-principles electronic structure calculations using molecular orbital and band theory. This chapter will review the experimental and theoretical investigations on the nature of the Si—O bond.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boisen MB Jr, Gibbs GV (1987) A method for calculating fractional s-character for bonds of tetrahedral oxyanions in crystals. Phys Chem Mineral 14: 373–376

    Article  Google Scholar 

  • Bleam WF, Hoffmann R (1988) Orbital interactions in phyllosilicates: pertrubations of an idealized two-dimensional, infinite silicate frame. Phys Chem Mineral 15: 398–408

    Article  Google Scholar 

  • Burdett JK (1982) Predictions of structure of complex solids. Adv Chem Phys 49: 47–112

    Article  Google Scholar 

  • Coppens EP, Hall MB (eds) (1982) Electron distributions and the chemical bond. Plenum Press, New York

    Google Scholar 

  • Dikov YuP. Rekharsky VI, Gutzev Gl, Dolin SP, Levin AA (1986) Model investigation of electronic structure of some silicate clusters by DVM-Xα. Phys Chem Mineral 13: 48–60

    Article  Google Scholar 

  • Dovesi R, Pisani C, Roetti C (1987) The electronic structure of α-quartz. A periodic Hartree- Fock calculation. J Chem Phys 86: 6967–6971

    Google Scholar 

  • Downs JW, Gibbs GV (1981) The role of the BeOSi bond in the structures of beryllosilicate minerals. Am Mineral 66: 819–826

    Google Scholar 

  • Downs JW, Gibbs GV (1987) An exploratory examination of the electron density and electrostatic potential of phenakite. Am Mineral 72: 769–777

    Google Scholar 

  • Fisher B, Pollak RA, Distefano TH, Grobman WD (1977) ELectronic structure of SiO2, SixGe1-xO2 and GeO2 from photoemission spectroscopy. Phys Rev B 15: 3193–3199

    Article  Google Scholar 

  • Geisinger KL, Gibbs GV, Navrotsky A (1985) A molecular orbital study of bond length and angle variations in framework structures. Phys Chem Mineral 11: 266–283

    Article  Google Scholar 

  • Gibbs GV (1982) Molecules as models for bonding in silicates. Am Mineral 67: 421–450

    Google Scholar 

  • Gibbs GV, Boisen MB Jr (1986) Molecular mimicry of structure and electron density distributions in minerals. Mat Res Soc Symp Proc 73: 515–527

    Article  Google Scholar 

  • Hargittai M, Hargittai I (1987) Gas-solid molecular structure differences. Phys Chem Mineral 14: 413–425

    Article  Google Scholar 

  • Harrison WA (1980) Electronic structure and the properties of solids. Freeman, San Francisco

    Google Scholar 

  • Hoffmann R (1988) Soilds and surfaces: a chemist’s view of bonding in extended structures. VCH, New York

    Google Scholar 

  • Jackson MD, Hem RJ, Gordon RG (1985) Recent advances in electron gas theory for minerals. Trans Am Geophys Union 66: 357

    Google Scholar 

  • Jackson MD, Gordon RG (1985) MEG investigation of low pressure silica-shell model for polarization. Phys Chem Mineral 16: 212–220

    Google Scholar 

  • Lasaga AC, Gibbs GV (1988) Quantum mechanical potential surfaces and calculations on minerals and molecular clusters. Phys Chem Mineral 16: 29–41

    Article  Google Scholar 

  • Liebman JF, Greenberg A (eds) (1987) Molecular structure and energetics. Deerfield Beach ( FL ), New York

    Google Scholar 

  • McMillan PF, Hess AC (1990) Ab initio valence force field calculations for quartz. Phys Chem Mineral 17: 97–107

    Article  Google Scholar 

  • Newton MD, Gibbs GV (1980) Ab initio calculated geometries and charge distributions for H4SiO4 and H6Si2O7 compared with experimental values for silicates and siloxanes. Phys Chem Mineral 6: 221–246

    Article  Google Scholar 

  • O’Keeffe M, Navrotsky A (eds) (1981) Structure and bonding in crystals. Academic Press, New York

    Google Scholar 

  • O’Keeffe M, Domenges B, Gibbs GV (1985) Ab initio molecular orbital calculations on phosphates: comparison with silicates. J Phys Chem 89: 2304–2309

    Article  Google Scholar 

  • Pantelides ST (1977) Recent advances in the theory of electronic structure of Si02. Comm Sol State Phys 8: 55–60

    Google Scholar 

  • Post J, Burnham CW (1986) Ionic models of mineral structures and energies in the electron gas approxmation: Ti02 polymorphs, quartz, forsterite, diopside. Am Mineral 71: 142–150

    Google Scholar 

  • Tamada O, Tanaka K (1988) Molecular orbital study (CNDO/2) of cation charge in forsterite (α-Mg2SiO4). Mineral J 14: 12–20

    Article  Google Scholar 

  • Tossell J A (1984) A qualitative MO model for bridging bond angle variations in minerals. Phys Chem Mineral 11: 81–84

    Article  Google Scholar 

  • Tossell J A, Gibbs GV (1978) The use of molecular-orbital calculations on model systems for the predicition of bridging-bond-angle variations in siloxanes, silicates, silicon nitrides and silicon sulfides. Acta Cryst A34: 463–472

    Article  Google Scholar 

  • Tossell JA, Lazzeretti P (1986) Ab initio calculations of 29Si NMR chemical shifts for some gas phase and solid stata silicon fluorides and oxides. J Chem Phys 84: 369–374

    Article  Google Scholar 

  • Tossell J A, Vaughan DJ (1991) Theoretical geochemistry: applications of quantum mechanics in the earth and mineral sciences. Oxford Univ Press, England

    Google Scholar 

  • Vaughan JD (1986) Chemical bonding in minerals. In: Meth Spectroscop Appi Miner V.2, Paris

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dubrovinsky, S., Sherman, D.M. (1994). Chemical Bonding in Silicates. In: Marfunin, A.S. (eds) Advanced Mineralogy. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78523-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78523-8_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78525-2

  • Online ISBN: 978-3-642-78523-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics