Skip to main content

Some Remarks on Relational Input-Output-Models

  • Chapter
  • 216 Accesses


A relational input-output-model consists of an input space Ø≠V⊆R n+ , an output space Ø≠X⊆R n+ , and a total relation Q⊆VxX called the input-output relation. This input-output relation includes all tuples of input and output vectors which represent technologically feasible activities, and which in that sense form a technology set. In a given activity the output vector is interpreted as a list of gross production and gross disposal, while the input vector is interpreted as a list of gross consumption and gross emission. The term “technology” includes semantically not only classical production processes, but also contemporary disposal processes. The result of an activity is defined as the difference between the output vector and the input vector, and is the list of net production/disposal and net consumption/emission. The result of an activity is a list of expenditures and returns, and can be conceived as quantities of production factors and products.

Having defined the above, it is then possible to consider all activities through which a desired minimum result can be achieved. The goal here is to yield at least a minimum quantity of products while at the same time respecting a limit of the quantities of production factors. This restriction permits the definition of dual planning tasks in the direction of either activity minimization or activity maximization. Necessary and sufficient conditions are then given for their unique solvability. Finally models are dealt with in which either an input or an output function exists which models a technological process. These models ensure the unique solvability of one of the dual planning tasks.

This is a preview of subscription content, access via your institution.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  • Opitz, O. (1987), Zum technischen Optimierungsproblem des Unternehmers, Schweizerische Zeitschrift für Volkswirtschaft und Statistik 106, 369–381.

    Google Scholar 

  • Steffens, F. (1987), Einplanung von Auftragsnetzen in PPS-Systemen, in: Domschke, W., Krabs, W., Lehn, J., Spellucci P. (Hrsg.): Methods of Operations Research 57, Athenäum, 631–646.

    Google Scholar 

  • Steffens, F. (1987), Technische Optimierung und Nettobedarfsbildung in isotonen Input- Output-Systemen, in: Opitz,O., Rauhut, B. (Hrsg.): Ökonomie und Mathematik, Berlin- Heidelberg-New York, 305–329.

    Google Scholar 

  • Wittman, W. (1968), Produktionstheorie, Berlin-Heidelberg-New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1993 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Steffens, F. (1993). Some Remarks on Relational Input-Output-Models. In: Diewert, W.E., Spremann, K., Stehling, F. (eds) Mathematical Modelling in Economics. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78510-8

  • Online ISBN: 978-3-642-78508-5

  • eBook Packages: Springer Book Archive