Skip to main content

A Production Function for Scientific Interaction

  • Chapter


This paper studies how inputs and output of two scientists engaged in joint research may be described by a symmetric production function.

Based on research at the Institute for Future Studies, Stockholm, Sweden. I am indebted to Professor A°ke Andersson for stimulating disussion.

This is a preview of subscription content, access via your institution.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  • Beckmann, M. (1989), Tinbergen Lectures on Organization Theory, Springer-Verlag, Heidelberg.

    Google Scholar 

  • Eichhorn, W. (1970), “Theorie der Homogenen Produktions-Funktion,” Lecture Notes in Economics and Mathematical Systems, Vol. 22, Springer-Verlag, Heidelberg.

    Google Scholar 

  • Frisch, R. (1935), “The Principle of Substitution: An Example of its Application in the Chocolate Industry,” Nordisk Tichschrift fur Teknisch Okonomie (September), 12–27.

    Google Scholar 

  • Koopmans, T. C. (1951), “Analysis of Production as an Efficient Combination of Activities,” Activity Analysis of Production Allocation, Wiley.

    Google Scholar 

  • Schneider, E. (1934), Theorie der Produktion, Tübingen, Mohr.

    Google Scholar 

Download references

Author information

Authors and Affiliations


Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1993 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Beckmann, M.J. (1993). A Production Function for Scientific Interaction. In: Diewert, W.E., Spremann, K., Stehling, F. (eds) Mathematical Modelling in Economics. Springer, Berlin, Heidelberg.

Download citation

  • DOI:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78510-8

  • Online ISBN: 978-3-642-78508-5

  • eBook Packages: Springer Book Archive