Skip to main content

Just Intergenerational Resource Sharing: An Axiomatic Approach

  • Chapter

Abstract

In contrast to customary approaches to the theoretical economic problem of intergenerational resource distribution, we employ an axiomatic approach based on two principles: efficiency and sustainability. These are operationalized and then decisions which satisfy them are characterized in the presence of a standard technology. Upon interpreting some basic implications, the chosen approach turns out to be a kind of fusion of utilitarian principles and a particular distributional restriction. The proof of the existence of a resource-sustaining solution for a generalized model reveals some interesting relationships between our approach and general equilibrium theory.

Keywords

  • Planning Horizon
  • Price Vector
  • Axiomatic Approach
  • Future Consumption
  • General Equilibrium Theory

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Arrow, K.J. (1973a), “Some Ordinalist-Utilitarian Notes on Rawls’ Theory of Justice,” The Journal of Philosophy 70, 245–263.

    CrossRef  Google Scholar 

  • Arrow, K.J. (1973b), “Rawls’ Principle of Just Saving,” Swedish Journal of Economics 75, 323–335.

    CrossRef  Google Scholar 

  • Asheim, G.B. (1991), “Unjust Intergenerational Allocations,” Journal of Economic Theory 54, 350–371.

    CrossRef  Google Scholar 

  • Boyd III, J.H. (1990), “Recursive Utility and the Ramsey Problem,” Journal of Economic Theory 50, 326–345.

    CrossRef  Google Scholar 

  • Chakravarty, S. (1962), “Optimal Savings with Finite Horizon,” International Economic Review 3, 338–355.

    CrossRef  Google Scholar 

  • Ferejohn, J. and Page, T. (1978), “On the foundation of intertemporal choice,” Amer. J. Agr. Econ. 60, 269–275.

    CrossRef  Google Scholar 

  • Harsanyi, J.C. (1975), “Can the Maximum Principle serve as a basis for Morality? A critique of John Rawls’ Theory,” American Political Science Review 69, 594–606.

    CrossRef  Google Scholar 

  • Hellwig, K. (1987), Bewertung von Ressourcen, Physica, Heidelberg.

    Google Scholar 

  • Hellwig, K. (1992), Ertragswerterhaltung und ökonomisches Gleichgewicht, Discussion Paper, Abt. Betriebswirtschaft, Universität Ulm.

    Google Scholar 

  • Hori, H. (1992), “Utility Functionals with Nonpaternalistic Intergenerational Altruism: The Case Where Altruism Extends to Many Generations,” Journal of Economic Theory 56, 451–467.

    CrossRef  Google Scholar 

  • Phelps, E.S. and Riley, J.G. (1978), “Rawlsian Growth: Dynamic Programming of Capital and Wealth for Intergeneration ‘Maximm’ Justice,” Review of Economic Studies 45, 103–120.

    CrossRef  Google Scholar 

  • Ramsey, F.P. (1928), “A Mathematical Theory of Saving,” Economic Journal 38, 543–559.

    CrossRef  Google Scholar 

  • Rawls, J. (1971), A Theory of Justice, Harvard University Press, Massachusetts.

    Google Scholar 

  • Sen, A. (1961), “On Optimising the Rate of Saving,” Economic Journal 71, 479–495.

    CrossRef  Google Scholar 

  • Speckbacher, G. (1992), Ein Konzept zur gerechtigkeitsorientierten Bewertung von Alterssicherungssystemen, Dissertation, Universität Ulm.

    Google Scholar 

  • Tinbergen, J. (1960), “Optimum Savings and Utility Maximization over Time,” Econometrica 28, 481–489.

    CrossRef  Google Scholar 

  • Whittle, P. (1971), Optimization under Constraints, Wiley, London.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1993 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Hellwig, K., Speckbacher, G. (1993). Just Intergenerational Resource Sharing: An Axiomatic Approach. In: Diewert, W.E., Spremann, K., Stehling, F. (eds) Mathematical Modelling in Economics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78508-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78508-5_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78510-8

  • Online ISBN: 978-3-642-78508-5

  • eBook Packages: Springer Book Archive