Skip to main content

NMR as a Generalized Incoherent Scattering Experiment

  • Conference paper

Part of the book series: NMR ((NMR,volume 30))

Abstract

Two types of stimulated NMR echo experiments, 2H-spin alignment and field gradient NMR, are formulated in terms of a “generalized dynamic scattering function”. The analogies to incoherent quasielastic neutron scattering are discussed. The concept is illustrated by selected examples covering molecular reorientations and self diffusion in molecular crystals and supercooled liquids, anomalous diffusion in linear chain polymers and restricted diffusion of molecules in confined geometries.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Egelstaff PA (ed) (1971) Thermal neutron scattering, Academic, New York

    Google Scholar 

  2. Marshall W, Lovesey SW (1971) Theory of thermal neutron scattering, Clarendon Oxford

    Google Scholar 

  3. Lovesey SW (1984) Theory of neutron scattering from condensed matter, Clarendon, Oxford

    Google Scholar 

  4. Squires GL (1978) Introduction to the Theory of Thermal Neutron Scattering, Cambridge University-Press, Cambridge

    Google Scholar 

  5. Van Hove L (1954) J. Chem. Phys. 95: 245

    Google Scholar 

  6. Leadbetter A J, Lechner RE (1979) In: Sherwood JN (ed) The plastically crystalline state, Wiley, New York, p 285; Lechner RE (1983) In: Berniere F, Catlow CRA (ed) Mass Transport in Solids, Plenum, New York, p 169–226

    Google Scholar 

  7. Sears VF (1984) Thermal-neutron scattering lengths and cross-sections for condensed matter research, Chalk River Nuclear Laboratories, Chalk River, Ontario, Canada

    Google Scholar 

  8. Bee M (1988) Quasielastic Neutron Scattering, Adam Hilger, Bristol, Philadelphia

    Google Scholar 

  9. Chudley GT, Elliott RJ (1961) Proc. Phys. Soc. 77: 353

    Article  Google Scholar 

  10. Springer T (1972) Quasielastic Neutron Scattering for the Investigation of Diffusive Motions in Solids and Liquids, Springer Tracts in Modern Physics, Berlin

    Google Scholar 

  11. Dianoux AJ, Volino F (1977) Mol. Phys. 34: 1263; Volino F, Dianoux AJ, Heidelmann A (1979) J. Physique Lett. 40: L583

    Google Scholar 

  12. Dorner B (1972) Coherent inelastic neutron scattering in lattice dynamics, Tracts in Modern Physics 93: Springer, Heidelberg

    Google Scholar 

  13. Spiess HW (1983) Colloid & Polymer Sci. 261: 193; Sillescu H (1982) Pure & Applied Chem. 54: 619; Spiess HW (1985) Adv. Pol. Sci. 66: 23

    Google Scholar 

  14. Spiess HW, Sillescu H (1981) J. Magn. Res. 42: 381

    CAS  Google Scholar 

  15. Spiess HW (1980) J. Chem. Phys. 72: 6755

    Article  CAS  Google Scholar 

  16. Schmidt C, Blümich B, Wefing S, Spiess HW (1986) Chem. Phys. Lett. 130: 84

    Article  CAS  Google Scholar 

  17. Wefing S (1987) Ph.D. thesis, Mainz

    Google Scholar 

  18. Wefing S, Spiess HW (1988) J. Chem. Phys. 89: 1219

    Google Scholar 

  19. Fujara F, Wefing S, Kuhs WF (1988) J. Chem. Phys. 88: 6801

    Article  CAS  Google Scholar 

  20. Tanner JE, Stejskal EO (1968) J. Chem. Phys. 49: 1768

    Google Scholar 

  21. Kärger J, Pfeifer H, Heink W (1989) Adv. Magn. Res. 12: 1

    Google Scholar 

  22. Callaghan PT (1991) Principles of Magnetic Resonance Microscopy, Clarendon, Oxford

    Google Scholar 

  23. Kimmich R, Unrath W, Schnur G, Rommel E (1991) J. Magn. Res. 91: 136

    CAS  Google Scholar 

  24. Fujara F, Geil B, Sillescu H, Fleischer G (1992) Z. Phys. B 88: 195

    Article  CAS  Google Scholar 

  25. Fujara F, Wefing S, Spiess HW (1986) J. Chem. Phys. 84: 4579

    Article  CAS  Google Scholar 

  26. Fujara F, Petry W, Schnauss W, Sillescu H (1988) J. Chem. Phys. 89: 1801

    Google Scholar 

  27. Solum MS, Zilm KW, Michl J, Grant DM, (1983) J. Chem. Phys. 87: 2940

    Google Scholar 

  28. Schmidt C (1987) Ph.D. thesis, Mainz

    Google Scholar 

  29. Rössler E (1986) Chem. Phys. Lett. 128: 330

    Article  Google Scholar 

  30. Lausch M, Spiess HW (1983) J. Magn. Res. 54: 466

    CAS  Google Scholar 

  31. Andrew ER (1950) J. Chem. Phys. 18:607; Allen PS, Cowking A (1967) J. Chem. Phys. 47: 4286

    Google Scholar 

  32. Wykoff RWG (1969) Crystal Structures, 2nd ed., vol. 6, part 1, Interscience, New York

    Google Scholar 

  33. Pschorn U, Rössler E, Sillescu H, Kaufmann S, Schäfer D, Spiess HW, (1991) Macromolecules 24

    Google Scholar 

  34. Wefing S, Kaufmann S, Spiess HW (1988) J. Chem. Phys. 89: 1234

    Google Scholar 

  35. Andrew ER, Eades RG (1953) Proc. Roy. Soc. London Ser. A 218, 537

    Google Scholar 

  36. Haeberlen U, Maier G, Z Naturforsch, Teil A (1967) 22: 1236

    CAS  Google Scholar 

  37. Wemmer DE (1978) Ph.D. thesis, University of California, Berkeley; Mehring M (1983) Principles of High Resolution NMR in Solids, p. 59, Springer, Berlin

    Google Scholar 

  38. Cox EG, Cruickshank DWJ, Smith JA (1958) Proc. Roy. Soc. London Ser. A 247: 1

    Google Scholar 

  39. Oppenheim I, Schuler KE, Weiss GH (1977) Stochastic Processes in Chemical Physics, MIT Press, Cambridge (Mass.), USA

    Google Scholar 

  40. Van Steenwinkel R, Z Naturforsch A (1969) 24:1526; O’Reilly D, Peterson EM (1972) J. Chem. Phys. 56: 5536; Noack F, Weithase M, von Schütz J (1975) Z. Naturforsch. A30:1707, McGuigan S, Strange JH, Chezeau JM (1982) Mol. Phys. 47: 373

    Google Scholar 

  41. Fox R, Sherwood JN (1971) Trans. Faraday Soc. 67: 3364

    Article  CAS  Google Scholar 

  42. Guillon T, Conradi MS (1985) J. Chem. Phys. B 32: 7076

    Google Scholar 

  43. Lutze U (1989) Ph.D. thesis, Mainz

    Google Scholar 

  44. Wong J, Angell CA (1976) Glass—Structure by Spectroscopy, Marcel Dekker, New York

    Google Scholar 

  45. Jäckle J (1986) Rep. Prog. Phys. 49: 171

    Article  Google Scholar 

  46. Brawer SA (1983) Relaxation in viscous liquids and glasses, Am. Ceram. Soc., New York

    Google Scholar 

  47. Götze W, Sjögren L (1992) Rep. Prog. Phys. 55: 241

    Article  Google Scholar 

  48. Diehl RM, Fujara F, Sillescu H (1990) Europhys. Lett. 13: 257

    Article  CAS  Google Scholar 

  49. McDuffie GE, Litovitz jr. TA, (1962) J. Chem. Phys. 37: 1699

    Google Scholar 

  50. Dux H, Dorfmüller Th (1979) J. Chem. Phys. 40: 219

    CAS  Google Scholar 

  51. Wolfe M, Jonas J (1979) J. Chem. Phys. 71: 3252

    Article  CAS  Google Scholar 

  52. Kintzinger JP, Zeidler MD (1972) Ber. Bunsenges. Phys. Chem. 77: 98

    Google Scholar 

  53. Kuhns PL, Conradi MS (1982) J. Chem. Phys. 77: 1771

    Google Scholar 

  54. Soltwisch M, Elwenspoek M, Quitmann D (1978) Mol. Phys. 34: 33 (1977) 35: 1221

    Google Scholar 

  55. Soltwisch M, Quitmann D (1979) J. Phys. C, 40: 666

    Google Scholar 

  56. Fujara F, Petry W, Diehl RM, Sillescu H (1991) Europhys Lett. 14: 563

    Article  CAS  Google Scholar 

  57. Birge NO, Nagel SR (1985) J. Chem. Phys. Lett. 54: 2674

    Google Scholar 

  58. Champeney DC, Joarder RN, Dore JC (1986) Mol. Phys. 58: 337

    Article  CAS  Google Scholar 

  59. Bengtzelius U, Götze W, Sjölander A (1984) J. Phys. C 17: 5915

    Google Scholar 

  60. Sjögren L, Götze W (1989) Springer Proceedings in Physics 37: 18

    Google Scholar 

  61. Götze W, in: Liquid, freezing and the glass transition, ed: Levesque D, Hansen JP, Zinn-Justin J (1991) pp 287–503, North-Holland, Amsterdam

    Google Scholar 

  62. Rössler E (1990) J. Chem. Phys. Lett. 65: 1595

    Google Scholar 

  63. Cuikermann M, Lane JW, Uhlmann DR (1973) J. Chem. Phys. 59: 3639; Laughlin WT, Uhlmann DR, (1972) J. Phys. Chem. 76: 2317; McLaughlin E, Ubbelohde AR, (1958) Trans. Faraday Soc. 54, 1804

    Google Scholar 

  64. Lohfink M, Sillescu H, 1st Tohwa University International Symposium, Fukuoka, Japan, 4–8 November 1991, Am. Inst, of Phys. Conf. Proc. No 256 (1992), p. 30, New York

    Google Scholar 

  65. McCall DW, Douglass DC, Falcone DR (1969) J. Chem. Phys. 50: 3839

    Article  CAS  Google Scholar 

  66. Petry W, Bartsch E, Fujara F, Kiebel M, Sillescu H, Farago B (1991) Z. Phys. B 83: 175

    Google Scholar 

  67. Fujara F (1993) J. Molecular Structure 296: 285

    Article  CAS  Google Scholar 

  68. Kiebel M, Bartsch E, Debus O, Fujara F, Petry W, Sillescu H (1992) J. Chem. Phys. B 45: 10301

    Google Scholar 

  69. Wuttke J, Kiebel M, Bartsch E, Fujara F, Petry W, Sillescu H (1993) Z. Phys. B91: 357

    Article  CAS  Google Scholar 

  70. de Gennes PG (1971) J. Chem. Phys. 75: 572

    Article  Google Scholar 

  71. Edwards SF (1967) Proc. Phys. Soc. 92: 9

    Article  CAS  Google Scholar 

  72. Stejskaj OE, Tanner JE (1965) J. Chem. Phys. 42: 288

    Article  Google Scholar 

  73. Klein J (1978) Nature 271: 143

    Article  CAS  Google Scholar 

  74. Coutandin J, Sillescu H, Voelkel R (1982) Makromol. Chem. Rapid Comm. 3: 649

    Article  CAS  Google Scholar 

  75. de Gennes PG (1979) Scaling Concepts in Polymer Physics. Cornell University Press, Ithaca NY.

    Google Scholar 

  76. Doi M, Edwards SF (1986) The Theory of Polymer Dynamics. Clarendon, Oxford

    Google Scholar 

  77. Graessley WW (1982) Adv. Polymer Sci. 47: 67

    Article  CAS  Google Scholar 

  78. Vasiljev Gl, Skirda VD (1988) Vysokomol. Soed. A 30: 849

    Google Scholar 

  79. Appel M, Fleischer G (1993) Macromolecules in press

    Google Scholar 

  80. Sevreugin VA, Skirda VD, Maklakov AI (1986) Polymer 27: 290

    Article  CAS  Google Scholar 

  81. von Meerwall E, Palunas P (1987) J. Polymer Sci. Polymer Phys. Ed. 25: 1439

    Google Scholar 

  82. Appel M (1992) Diploma thesis, Univ. Leipzig

    Google Scholar 

  83. Bachus R, Kimmich R (1983) Polymer 24: 964

    Article  CAS  Google Scholar 

  84. Pearson DS, Ver Strate G, von Meerwall E, Schilling FC (1987) Macromolecules 20: 1133

    Google Scholar 

  85. Fleischer G (1987) Colloid Polymer Sci. 265: 89

    Article  CAS  Google Scholar 

  86. von Meerwall ED, Grigsby J, Tomich D, van Antwerp R (1982) J. Polymer Sci. Polymer Phys. Ed. 20: 1037

    Google Scholar 

  87. Fleischer G (1984) Polymer Bull. 11: 75

    Article  CAS  Google Scholar 

  88. Ngai KL, Rendell RW, Rajagopal AK, Teitler S (1985) Ann. NY Acad. Sci. 484: 150

    Article  Google Scholar 

  89. Ref. 76, chap. 6

    Google Scholar 

  90. Richter D, Ewen B, Farago B, Wagner T (1989) J. Chem. Phys. Lett. 62: 2140

    Google Scholar 

  91. Butera R, Fetters LJ, Huang JS, Richter D, Pyckhout-Hintzen W, Zirkel A, Farago B, Ewen B (1991) J. Chem. Phys. Lett. 66: 2088

    Google Scholar 

  92. Fleischer G, Fujara F (1992) Macromolecules 25: 4210

    Article  CAS  Google Scholar 

  93. Fleischer G, Skirda, VD, Werner A (1990) Europ. Biophys. J. 19: 25

    CAS  Google Scholar 

  94. Skirda VD, Doroginizkij MM, Sundukov VI, Maklakov AI, Fleischer G, Häusler KG, Straube E (1988) Makromol. Chem. Rapid Comm. 9: 603

    Article  CAS  Google Scholar 

  95. Heinrich G, Straube E (1988) Adv. Polymer Sci. 85: 34

    Google Scholar 

  96. Kärger J, Ruthven DM (1992) Diffusion in Zeolites and Other Microporous Solids. Wiley, New York

    Google Scholar 

  97. Kärger J, Heink W (1983) J. Magn. Res. 51: 1

    Google Scholar 

  98. Hagemeyer A, Kanert O, Balzer-Jöllenbeck G (1989) J. Chem. Phys. B 39: 15

    Google Scholar 

  99. Rössler E (1992) Habilitationsschrift, Berlin

    Google Scholar 

  100. Patyal BR, Crepeau RH, Gamliel D, Freed JH (1990) Chem. Phys. Lett. 175: 453

    Article  CAS  Google Scholar 

  101. Steyerl A, Drexel W, Malik SS, Gutsmiedl E (1988) Physica B 151: 36

    Article  CAS  Google Scholar 

  102. Alefeld B, Badurek G, Rauch H (1981) Z. Phys. B 41, 231

    Google Scholar 

  103. Gerdau E, Rüffer R, Winkler H, TolksdorfW, Klages CP, Hannon JP, J. Chem. Phys. Lett. 54, 835

    Google Scholar 

  104. Chang I, Fujara F, Geil B, Hinze G, Tölle A, Sillescu H (1994) J. Non-Cryst. Solids, in press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag, Berlin Heidelberg

About this paper

Cite this paper

Fleischer, G., Fujara, F. (1994). NMR as a Generalized Incoherent Scattering Experiment. In: Blümich, B. (eds) Solid-State NMR I Methods. NMR, vol 30. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78483-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78483-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78485-9

  • Online ISBN: 978-3-642-78483-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics