Skip to main content

Pharmacological and Binding Evidence for Opioid Receptors on Vertebrate and Invertebrate Blood Cells

  • Chapter
Neuropeptides and Immunoregulation

Abstract

Current evidence indicates that opioid peptides, whose roles in the nervous system are well established, affect immunoactive cells (Smith and Blalock 1981; for review see Blalock 1989). The significance of this phenomenon is highlighted by the discovery that it applies to invertebrates as well as vertebrates (Leung and Stefano 1987; Stefano 1982, 1989). A search for stereoselective mechanisms mediating these neuropeptide activities has been under way for some time. Its results, though still incomplete, seem to indicate that in both groups of animals the complexity of ligand-receptor binding is greater than anticipated. The existing evidence for these parallels presented in this chapter, and in that by Janković and Marić, is based on pharmacological data as well as binding studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ausciello CM, Roda LG (1984) Leu-enkephalin binding to cultured human T-lymphocytes. Cell Biol Int Rep 8:353–362

    Article  Google Scholar 

  • Blalock JE (1989) A molecular basis for bidirectional communication between the immune and neuroendocrine systems. Physiol Rev 69:1–32

    PubMed  CAS  Google Scholar 

  • Boogaerts MA, Vermylen J, Deckmyn H, Roelant C, Verwilghen RL, Jacob HS, Moldow CF (1983) Enkephalins modify.granulocyte-endothelial interactions by stimulating prostacyclin production. Thromb Haemost 50:572–576

    PubMed  CAS  Google Scholar 

  • Bowen WD, Hellewell SB, Kelemen M, Huey R, Stewart D (1987) Affinity labelling of 6-opiate receptors using [D-Ala2, Leu5, Cysb]enkephalin. J Biol Chem 262:13434–13439

    PubMed  CAS  Google Scholar 

  • Brown SL, Tokuda S, Saland LC, Van Epps DE (1986) Opioid peptides: effects on leukocyte migration. In: Plotnikoff NP, Faith RE, Murgo AJ, Good R (eds) Enkephalins and endorphins stress and the immune system. Plenum, New York, pp 367–386

    Google Scholar 

  • Carr DJJ, Kin CH, De Costa B, Jacobson AE, Rice KC, Blalock JE (1988a) Evidence for a 6-class opioid receptor on cells of the immune system. Cel Immunol 116:44–51

    Article  CAS  Google Scholar 

  • Carr DJJ, Bubien JK, Woods WT, Blalock JE (1988b) Opioid receptors on murine splenocytes. Ann NY Acad Sci 450:694–697

    Article  Google Scholar 

  • Casale TB, Bowman S, Kaliner M (1984) Induction of human cutaneous mast cell degranulation by opiates and endogenous opioid peptides: evidence for opiate and nonopiate receptor participation. J Allergy Clin Immunol 73:775–781

    Article  PubMed  CAS  Google Scholar 

  • De Carolis C, De Sanctis G, Perricone R, Fraioli F, Fontana L (1984) Evidence for an inhibitory role of ß-endorphin and other opioids on human total T rosette formation. Experientia 40: 738–740

    Article  PubMed  Google Scholar 

  • Duvaux-Miret O, Stefano GB, Smith EM, Dissous C, Capron A (1992) Immunosuppression in the definitive and intermediate hosts of the human parasite Schistosoma mansoni by release of immunoactive neuropeptides. Proc Natl Acad Sci USA 89:778–781

    Article  PubMed  CAS  Google Scholar 

  • Erspamer V, Melchiorri P, Falconieri-Erspamer G, Negri L, Corsi R, Severini C, Barra D, Simmaco M, Kreil G (1990) Deltorphins: a family of naturally occurring peptides with high affinity and selectivity for S opioid binding sites. Proc Natl Acad Sci USA 86:5188–5192

    Article  Google Scholar 

  • Faith RE, Liang HI, Murgo AJ, Plotnikoff NP (1984) Neuroimmunomodulation with enkephalins: enhancement of human natural killer (NK) cell activity in vitro. Clin Immunol Immunopathol 31:412–418

    Article  PubMed  CAS  Google Scholar 

  • Falke NE, Fischer EG (1985) Cell shape of polymorphonuclear leukocytes is influenced by opioids. Immunobiology 169:532–539

    Article  PubMed  CAS  Google Scholar 

  • Falke NE, Fischer EG (1986) Opiate receptor mediated internalization of 125I-ß-endorphin in human polymorphonuclear leucocytes. Cell Biol Int Rep 10:429–437

    Article  PubMed  CAS  Google Scholar 

  • Farrar WL (1984) Endorphin modulation of lymphokine activity. In: Fraiolo F, Isidori A, Mazzetti M (eds) Opioid peptides in the periphery. Elsevier, Amsterdam, pp 159–167

    Google Scholar 

  • Fjellner B, Hagermark O (1982) Potentiation of histamine-induced itch and flare responses in human skin by the enkephalin analogue FK 33–824, ß-endorphin and morphine. Arch Dermatol Res 274:29–35

    Article  PubMed  CAS  Google Scholar 

  • Foris G, Medgyesi GA, Gyimesi E, Hauck M (1984) Met-enkephalin induced alterations of macrophage functions. Mol Immunol 21:747–754

    Article  PubMed  CAS  Google Scholar 

  • Foris G, Medgyesi GA, Hauck M (1986) Bidirectional effect of Met-enkephalin on macrophage effector functions. Mol Cell Biochem 69:127–134

    Article  PubMed  CAS  Google Scholar 

  • Froelich CJ, Bankhurst AD (1984) The effect of ß-endorphin on natural cytotoxicity and antibody dependent cellular cytotoxicity. Life Sci 35:261–269

    Article  PubMed  CAS  Google Scholar 

  • Gilman SC, Schwartz JM, Milner RJ, Bloom FE, Feldman JD (1982) ß-Endorphin enhances lymphocyte proliferative responses. Proc Natl Acad Sci USA 79:4226–4230

    Article  PubMed  CAS  Google Scholar 

  • Hazum E, Chang KJ, Cuatrecasas P (1979) Specific nonopiate receptors for ß-endorphin. Science 205:1033–1035

    Article  PubMed  CAS  Google Scholar 

  • Heijnen CJ, Bevers C, Kavelaars A, Ballieux RE (1986) Effect of ß-endorphin on the antigen induced primary antibody response of human blood B cells in vitro. J Immunol 136:213–218

    PubMed  CAS  Google Scholar 

  • Hughes TK Jr, Smith EM, Chin R, Cadet P, Sinisterra J, Leung MK, Shipp MA, Scharrer B, Stefano GB (1990) Interaction ofimmunoactive monokines (IL-1 and TNF) in the bivalve mollusc Mytilus edulis. Proc Natl Acad Sci USA 87:4426–4429

    Article  PubMed  CAS  Google Scholar 

  • Jankovie BD, Marié D (1988) Enkephalins modulate in vivo immune reactions through S- and p-opioid receptors. Ann NY Acad Sci 450:691–693

    Google Scholar 

  • Johnson HM, Smith EM, Torres BA, Blalock JE (1982) Regulation of the in vitro antibody response by neuroendocrine hormones. Proc Natl Acad Sci USA 79:4171–4174

    Article  PubMed  CAS  Google Scholar 

  • Kay M, Allen J, Morley JE (1984) Endorphins stimulate normal human peripheral blood lymphocyte natural killer activity. Life Sci 35:53–58

    Article  PubMed  CAS  Google Scholar 

  • Kream RM, Zukin RS, Stefano GB (1980) Demonstration of two classes of opiate binding sites in the nervous tissue of the marine mollusc Mytilus edulis: positive homotropic cooperativity of lower affinity binding sites. J Biol Chem 225(19):9218–9224

    Google Scholar 

  • Leung MK, Stefano GB (1987) Comparative neurobiology of opioids in invertebrates with special attention to senescent alterations. Prog Neurobiol 28:131–159

    Article  PubMed  CAS  Google Scholar 

  • Liu JS, Garrett KM, Lin SCC, Way EL (1983) The effects of opiates on calcium accumulation on rat peritoneal mast cells. Eur J Pharmacol 91:335–341

    Article  PubMed  CAS  Google Scholar 

  • Lopker A, Abood LG, Hoss W, Lionetti FJ (1980) Stereoselective muscarinic acetylcholine and opiate receptors in human phagocytic leukocytes. Biochem Pharmacol 29:1361–1365

    Article  PubMed  CAS  Google Scholar 

  • Mandler RN, Biddison WE, Mandler R, Serrate SA (1986) ß-endorphin augments the cytolytic activity and interferon production of natural killer cells. J Immunol 136:934–935

    PubMed  CAS  Google Scholar 

  • Marié D, Jankovié BD (1988) Suppression of anaphylactic shock by enkephalins. Ann NY Acad Sci 450:684–687

    Google Scholar 

  • Mathews PM, Froelich CJ, Sibbitt WL Jr, Bankhurst AD (1983) Enhancement of natural cytotoxicity by ß-endorphin. J Immunol 130:1658–1662

    PubMed  CAS  Google Scholar 

  • McCain HW, Lamster I, Bozzone JM, Grbic JT (1982) ß-Endorphin modulates human immune activity via non-opiate receptor mechanisms. Life Sci 31:1619–1624

    Article  PubMed  CAS  Google Scholar 

  • Mehrishi JN, Mills IH (1983) Opiate receptors on lymphocytes and platelets in man. Clin Immunol Immunopathol 27:240–249

    Article  PubMed  CAS  Google Scholar 

  • Miller GC, Murgo AJ, Plotnikoff NP (1983) Enkephalins-enhancement of active T-cell rosettes from lymphoma patients. Clin Immunol Immunopathol 26:446–451

    Article  PubMed  CAS  Google Scholar 

  • Miller GC, Murgo AJ, Plotnikoff NP (1984) Enkephalins-enhancement of active T-cell rosettes from normal volunteers. Clin Immunol Immunopathol 31:132–136

    Article  PubMed  CAS  Google Scholar 

  • Plotnikoff NP, Miller GC (1983) Enkephalins as immunomodulators. Int J Immunopharmacol 5: 437–441

    Article  PubMed  CAS  Google Scholar 

  • Radulescu RT, DeCosta BR, Jacobson AE, Rice KC, Blalock JE, Carr DJJ (1991) Biochemical and functional characterization of a p-opioid receptor binding site on cells of the immune system. Prog Neuroendocrinimmunol 4:166–179

    Google Scholar 

  • Sharp BM, Keane WF, Suh HJ, Gekker G, Tsukayama D, Peterson PK (1985) Opioid peptides rapidly stimulate superoxide production by human polymorphonuclear leukocytes and macro­phages. Endocrinology 117:793–799

    Article  PubMed  CAS  Google Scholar 

  • Scharrer B (1991) Neuroimmunology: the importance and role of a comparative approach. Adv Neuroimmunol 1:1–16

    Article  Google Scholar 

  • Shavit Y, Lewis JW, Terman GW, Gale RP, Liebeskind JC (1984) Opioid peptides mediate the suppressive effect of stress on natural killer cell cytotoxicity. Science 223:188–190

    Article  PubMed  CAS  Google Scholar 

  • Shavit Y, Terman GW, Martin FC, Lewis JW, Liebeskind JC, Gale RP (1985) Stress, opioid peptides, the immune system, and cancer. J Immunol 135s:834–838

    Google Scholar 

  • Shavit Y, Terman GW, Lewis JW, Zane CJ, Gale RP, Liebeskind JC (1986) Effects of footshock stress and morphine on natural killer lymphocytes in rats: studies of tolerance and cross-tolerance. Brain Res 372:382–387

    Article  PubMed  CAS  Google Scholar 

  • Shipp MA, Stefano GB, D’Adamio L, Switzer SN, Howard FD, Sinisterra J, Scharrer B, Reinherz E (1990) CD10/Neutral endopeptidase 24.11 (“enkephalinase”) downregulates enkephafin mediated inflammatory responses in invertebrate and mammalian organisms. Nature 347: 394–396

    Article  PubMed  CAS  Google Scholar 

  • Shipp MA, Stefano GB, Switzer SN, Griffin JD, Reinherz EL (1991) CD10 (CALLA)/neutral endopeptidase 24.11 modulates inflammatory peptide-induced changes in neutrophil morpho­logy, migration, and adhesion proteins and is itself regulated by neutrophil activation. Blood 78:1834–1841

    PubMed  CAS  Google Scholar 

  • Sibinga NES, Goldstein A (1988) Opioid peptides and opioid receptors in cells of the immune system. Annu Rev Immunol 6:219–249

    Article  PubMed  CAS  Google Scholar 

  • Smith EM, Blalock JE (1981) Human lymphocyte production of corticotropin and endorphin-like substances: association with leukocyte interferon. Proc Natl Acad Sci USA 78:7530–7535

    Article  PubMed  CAS  Google Scholar 

  • Smith EM, Hughes TK, Hashemi F, Stefano GB (1992) Immunosuppressive effects of ACTH and MSH and their possible significance in human immunodeficiency virus infection. Proc Natl Acad Sci USA 89:782–786

    Article  PubMed  CAS  Google Scholar 

  • Stefano GB (1980) Opiates and neuroactive pentapeptides: binding characteristics and interactions with dopamine stimulated adenylate cyclase in the pedal ganglia of Mytilus edulis. Adv Physiol Sci 22:423–453

    Google Scholar 

  • Stefano GB (1982) Comparative aspects of opioid-dopamine interaction. Cell Mol Neurobiol 2:167–178

    Article  PubMed  CAS  Google Scholar 

  • Stefano GB (1989) Role of opioid neuropeptides in immunoregulation. Prog Neurobiol 33:149–159

    Article  PubMed  CAS  Google Scholar 

  • Stefano GB (1991) Conformational matching a stabilizing signal system factor during evolution: additional evidence in comparative neuroimmunology. Adv Neuroimmunol 1:71–82

    Article  CAS  Google Scholar 

  • Stefano GB, Leung MK, Zhao X, Scharrer B (1989a) Evidence for the involvement of opioid neuropeptides in the adherence and migration of immunocompetent invertebrate hemocytes. Proc Natl Acad Sci USA 86:626–630

    Article  CAS  Google Scholar 

  • Stefano GB, Cadet P, Scharrer B (1989b) Stimulatory effects of opioid neuropeptides on locomotory activity and conformational changes in invertebrate and human immunocytes: evidence for a subtype of b receptor. Proc Natl Acad Sci USA 86:6307–6311

    Article  CAS  Google Scholar 

  • Stefano GB, Melchiorri P, Hughes TK, Scharrer B (1992a) Deltorphin I binding and pharmacological evidence for a novel subtype of 6-opioid receptor on human and invertebrate immune cells. Proc Natl Acad Sci USA 89:9316–9320

    Article  CAS  Google Scholar 

  • Stefano GB, Paemen LR, Hughes TK (1992b) Modulation of CDIO/neutral endopeptidase 24.11 by tumor necrosis factor and neuropeptides in immunocytes: implications in autoimmunomodulation. J Neuroimmunol 41:9–14

    Article  CAS  Google Scholar 

  • Wybran J (1985) Enkephalins and endorphins: activation molecules for the immune system and natural killer activity? Neuropeptides 5:371–377

    Article  PubMed  CAS  Google Scholar 

  • Wybran J, Appelboom T, Famaey JP, Govaerts A (1979) Suggestive evidence for receptors for morphine and methionine-enkephalin on normal human blood T lymphocytes. J Immunol 123: 1068–1070

    PubMed  CAS  Google Scholar 

  • Yamasaki Y, Shimamura O, Kizu A, Nakagawa N, Ijichi H (1983) Interactions of morphine with PGE1, isoproterenol, dopamine, and aminophylline in rat mast cells; their effect on IgE-mediated 14C-serotonin release. Agents Actions 13:21–27

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stefano, G.B. (1994). Pharmacological and Binding Evidence for Opioid Receptors on Vertebrate and Invertebrate Blood Cells. In: Scharrer, B., Smith, E.M., Stefano, G.B. (eds) Neuropeptides and Immunoregulation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78480-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78480-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78482-8

  • Online ISBN: 978-3-642-78480-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics