Skip to main content

Degradation of Neuropeptide Signal Molecules in Immunocytes of Vertebrates and Invertebrates

  • Chapter

Abstract

There are now substantial grounds for believing that the enkephalins have multiple physiological roles and can serve as neurotransmitters, neurohormones, or neuromodulators as well as immunomodulators. Other neuropeptides also function as signaling molecules in both the nervous and immune systems. It is therefore important to establish the mechanism by which the peptide signal is terminated. Previous studies (see, for example Turner et al. 1987) have ruled out a presynaptic uptake mechanism for neuropeptides in general. It has been demonstrated that if enkephalin is added to neural tissues or blood, it is rapidly metabolized (Lane et al. 1977; Vogel and Altstein 1979). This fact alone does not demonstrate the presence of a specific “enkephalinase.” Indeed, a nonspecific enzyme may serve equally well since specificity may be achieved by the location of the enzyme and the presence of only enkephalinergic signal molecules. The consensus of opinion now is that specific “neuropeptidases” do not exist, but rather that a handful of enzymes located at the cell surface of many different cell types can act in concert to degrade regulatory peptides. To date there is only one exception to this general rule: pyroglutamyl aminopeptidase II (EC 3.4.19.-), a metalloenzyme which appears to be a specific degrading enzyme for thyrotropinreleasing hormone (Wilk 1986). Much of our understanding of neuropeptide metabolism has come from a study of the peptidases of the mammalian renal brush-border membrane.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Barnes K, Turner AJ, Kenny AJ (1988) Electronmicroscopic immunocytochemistry of pig brain shows that endopeptidase-24.11 is localized in neuronal membranes. Neurosci Lett 94:64–69

    Article  PubMed  CAS  Google Scholar 

  • Bowes MA, Kenny AJ (1986) Endopeptidase-24.11 in pig lymph nodes: purification and immuno-cytochemical identification in reticular cells. Biochem J 236:801–810

    PubMed  CAS  Google Scholar 

  • Brown G, Hogg N, Greaves M (1975) Candidate leukemia-specific antigen in man. Nature 258:454–456

    Article  PubMed  CAS  Google Scholar 

  • Burstein Y, Buchner V, Pecht M, Trainin N (1988) Thymic humoral factor gamma2: purification and amino acid sequence of an immunoregulatory peptide from calf thymus. Biochemistry 27:4066–4071

    Article  PubMed  CAS  Google Scholar 

  • Carrel S, De Tribolet N, Gross N (1982) Expression of HLA-DR and common acute lymphoblastic leukemia antigens on glioma cells. Eur J Immunol 23:354–357

    Article  Google Scholar 

  • Carrel S, Schmidt-Kessen A, Mach J-P, Heumann D, Girardet C (1983) Expression of common acute lymphoblastic leukemia antigen (CALLA) on human malignant melanoma cell lines. J Immunol 130:2456–2466

    PubMed  CAS  Google Scholar 

  • Coletti-Previero MA, Mattras H, Descomps B, Previero A (1981) Purification and substrate characterization of a human enkephalin-degrading aminopeptidase. Biochem Biophys Acta 657:122–127

    PubMed  CAS  Google Scholar 

  • Cooper MD, Mulvaney D, Continho A, Cazenave P (1986) A novel cell surface molecule on early B-lineage cells. Nature 321:616–618

    Article  PubMed  CAS  Google Scholar 

  • Danielsen AM, Noren O, Sjostrom H, Ingram J, Kenny AJ (1980) Aspartate aminopeptidase: purification by immunoadsorbent chromatography and properties of the detergent and proteinasesolubilized forms. Biochem J 189:591–603

    PubMed  CAS  Google Scholar 

  • Devault A, Lazure C, Nault C, LeMoual H, Seidah NG, Chretien M, Kahn P, Powell J, Mallet J, Beaumont A, Roques BP, Crine P, Boileau G (1987) Amino acid sequence of rabbit kidney neutral endopeptidase 24.11 (enkephalinase) deduced from a complementary DNA. EMBO J 6:1317–1322

    PubMed  CAS  Google Scholar 

  • Dupont A, Cusan L, Garon M, Alvarado-Urbina G, Labrie F (1977) Extremely rapid degradation of [3H]-methionine-enkephalin by various rat tissues in vivo and in vitro. Life Sci 21:907–914

    Article  PubMed  CAS  Google Scholar 

  • Erdös EG, Wagner B, Harburg CB, Painter RG, Skidgel RA, Fa X (1989) Down-regulation and inactivation of neutral endopeptidase 24.11 (enkephalinase) in human neutrophils. J Biol Chem 264:14519–14523

    PubMed  Google Scholar 

  • Fischer EG, Falke NE (1987) Interaction of met-enkephalin with human granulocytes. Ann NY Acad Sci 496:146–150

    Article  PubMed  CAS  Google Scholar 

  • Flentke GR, Munoz E, Huber BT, Plant AG, Kettner CA, Bachovchin WW (1991) Inhibition of dipeptidylaminopeptidase IV (DP-IV) by Xoa-boroPro dipeptides and use of these inhibitors to examine the role of DP-IV in T cell formation. Proc Natl Acad Sci USA 88:1556–1559

    Article  PubMed  CAS  Google Scholar 

  • Fulcher IS, Pappin DJC, Kenny AJ (1986) The N-terminal amino acid sequence of pig kidney endopeptidase-24.11 shows homology with pro-sucrase-isomaltase. Biochem J 240:305–308

    PubMed  CAS  Google Scholar 

  • Funkhouser JD, Tangada SD, Jones M, O SJ, Peterson DA (1991) p146 type II alveolar epithelial cell antigen is identical to aminopeptidase N. Am J Physiol 260:274–279

    Google Scholar 

  • Gee NS, Bowes MA, Buck P, Kenny AJ (1985) An immunoradiometric assay for endopeptidase-24.11 shows it to be a widely distributed enzyme in pig tissues. Biochem J 228:119–126

    PubMed  CAS  Google Scholar 

  • Greaves MF, Brown G, Rapson N, Lister TA (1975) Antisera to acute lymphoblastic leukemia cells. Clin Immunol Immunopathol 4:67–72

    Article  PubMed  CAS  Google Scholar 

  • Greaves MF, Haiti G, Newman RA, Sutherland DR, Ritter MA, Ritz J (1983) Selective expression of the common acute lymphoblastic leukemia (gp100) antigen on immature lymphoid cells and their malignant counterparts. Blood 61:628–639

    PubMed  CAS  Google Scholar 

  • Hambrook JM, Morgan BA, Rance MJ, Smith CFC (1976) Mode of deactivation of the enkephalins by rat and human plasma and rat brain homogenates. Nature 262:782–783

    Article  PubMed  CAS  Google Scholar 

  • Hersh LB, Morihara K (1986) Comparison of the subsite specificity of the mammalian neutral endopeptidase-24.11 (enkephalinase) to the bacterial neutral endopeptidase thermolysin. J Biol Chem 261:6433–6437

    PubMed  CAS  Google Scholar 

  • Hioki Y, Okada K, Ito H, Matsuyama K, Yano M (1991) Endothelin converting enzyme of bovine carotid artery smooth muscle cells. Biochem Biophys Res Commun 174:446–451

    Article  PubMed  CAS  Google Scholar 

  • Hussain MM, Tranum-Jensen J, Noren O, Sjostrom H, Christiansen K (1981) Reconstitution of purified amphiphilic pig intestinal microvillus aminopeptidase. Biochem J 199:179–186

    PubMed  CAS  Google Scholar 

  • Indig FE, Pecht M, Trainin N, Burstein Y, Blumberg S (1991) Hydrolysis of thymic humoral factor gamma 2 by neutral endopeptidase EC 3.4.24.11 Biochem J 278:891–894

    CAS  Google Scholar 

  • Isaac RE (1988) Neuropeptide-degrading endopeptidase activity of locust (Schistocerca gregaria) synaptic membranes. Biochem J 255:843–847

    PubMed  CAS  Google Scholar 

  • Jongeneel CV, Bouvier J, Bairoch A (1989) A unique signature identifies a family of zinc-dependent metallopeptidases. FEBS Lett 242:211–214

    Article  PubMed  CAS  Google Scholar 

  • Kenny AL, Turner AJ (eds) (1987) Mammalian ectoenzymes, Elsevier, Amsterdam

    Google Scholar 

  • Kenny AJ, Stephenson SL, Turner AJ (1987) Cell-surface peptidases. In: Kenny AJ, Turner AJ (eds) Mammalian ectoenzymes. Elsevier, Amsterdam, pp 169–210

    Google Scholar 

  • Kerr MA, Kenny AJ (1974) The purification and specificities of a neutral endopeptidase from rabbit kidney brush border. Biochem J 137:477–488

    PubMed  CAS  Google Scholar 

  • Kreil G, Haiml L, Suchanek G (1980) Stepwise cleavage of the pro part of promelittin by dipeptidyl peptidase IV. Evidence for a new type type of precursor-product conversion. Eur J Biochem 111:49–58

    Article  PubMed  CAS  Google Scholar 

  • Lalu K, Lameplo S, Nummelin-Kortelainen M, Vanha-Perttula T (1984) Purification and partial characterization of aminopeptidase A from the serum of pregnant and non-pregnant women, Biochim Biophys Acta 789:324–333

    Article  PubMed  CAS  Google Scholar 

  • Lane A, Rance Mi, Walter DS (1977) Subcellular localization of leucine-enkephalin hydrolyzing activity in rat brain. Nature 269:75–76

    Article  PubMed  CAS  Google Scholar 

  • LeTarte M, Vera S, Tran R, Addis JB, Omizuka RJ, Quackenbush EJ, Jongeneel CV, McInnes RR (1988) Common acute lymphocytic leukemia antigen is identical to neutral endopeptidase. J Exp Med 168:1247–1253

    Article  PubMed  CAS  Google Scholar 

  • Leung MK (1990) Degradation of opioid peptides in invertebrate hemolymph. International workshop on developmental and comparative neuroimmunology, abstract no 12

    Google Scholar 

  • Leung MK, Le SX (1991) Enkephalin degradative enzymes in serum and hemolymph: a comparative study. Adv. Neuroimmunol 1:17–26

    Article  CAS  Google Scholar 

  • Leung MK, Lundy J (1990) Opioid neuropeptides in invertebrate haemolymph. In: Forey E, Stefano GB (eds) Comparative aspects of neuropeptides. Manchester University Press, Manchester, pp 516–517

    Google Scholar 

  • Look AT, Ashmun RA, Shapiro LH, Peiper SE (1989) Human myeloid plasma membrane glycoprotein CD13 (gp150) is identical to aminopeptidase. N. J Clin Invest 83:1299–1307

    Article  CAS  Google Scholar 

  • Lygren J, Revhaug PG, Burhol KE, Giercksky KE, Jenssen TG (1984) Vasoactive intestinal peptide and somatostatin in leukocytes. Scand J Clin Lab Invest 44:347–351

    Article  PubMed  CAS  Google Scholar 

  • Malfroy B, Swertz JB, Guyon A, Roques BP, Schwartz JC (1978) High affinity enkephalin-degrading peptidase in brain is increased after morphine. Nature 276:523–526

    Article  PubMed  CAS  Google Scholar 

  • Malfroy B, Schofield P, Kuang WJ, Seeburg PH, Mason AJ, Henzel WJ (1987) Molecular cloning and amino acid sequence of rat enkephalinase. Biochem Biophys Res Commun 144:59–66

    Article  PubMed  CAS  Google Scholar 

  • Malfroy B, Kuang WJ, Seeburg PH, Mason AJ, Schofield PR (1988) Molecular cloning and amino acid sequence of human enkephalinase (neutral endopeptidase). FEBS Lett 229:206–210

    Article  PubMed  CAS  Google Scholar 

  • Marini M, Roscetti G, Bongiorno L, Urbani A, Roda LG (1990) Hydrolysis and protection. from hydrolysis of enkephalins in human plasma. Neurochem Res 15:61–67

    Article  PubMed  CAS  Google Scholar 

  • Massoulie J, Bon S (1982) The molecular forms of cholinesterase and acetylcholinesterase in vertebrates. Annu Rev Neurosci 5:57–106

    Article  PubMed  CAS  Google Scholar 

  • Matsas R, Fulcher IS, Kenny AJ, Turner Ai (1983) Substance P and [Leu] enkephalin are hydrolyzed by an enzyme in pig caudate membranes that is identical with the endopeptidase of kidney microvilli. Proc Natl Acad Sci USA 80:3111–3115

    Article  PubMed  CAS  Google Scholar 

  • Matsas R, Kenny J, Turner All (1984) The metabolism of neuropeptides: the hydrolysis of peptides, including enkephalins, tachykinins and their analogues by endopeptidase-24.11. Biochem J 223:433–440

    PubMed  CAS  Google Scholar 

  • Matsas R, Stephenson SL, Hryszko J, Kenny AJ, Turner AJ (1985) The metabolism of neuropeptides: phase-separation of synaptic membrane preparations with Triton X-114 reveals the presence of aminopeptidase N. Biochem J 231:445–449

    CAS  Google Scholar 

  • Matsas R, Kenny AJ, Turner AJ (1986) An immunohistochemical study of endopeptidase-24.11 (`enkephalinase’) in the pig nervous system. Neuroscience 18:991–1012

    Article  PubMed  CAS  Google Scholar 

  • Medeiros MS, Balmforth AJ, Vaughan PFT, Turner AJ (1991) Hydrolysis of atrial and brain natriuretic peptides by the human astrocytoma clone D384 and the neuroblastoma line SH-SYSY. Neuroendocrinology 54:295–302

    Article  CAS  Google Scholar 

  • Meglitsch PA (1967) In: Invertebrate zoology. Oxford University Press, New York

    Google Scholar 

  • Painter RG, Dukes R, Sullivan J, Carter R, Erdös EG, Johnson AR (1988) Function of neutral endopeptidase on the cell membrane of human neutrophils. J. Biol Chem 263:9456–9461

    PubMed  CAS  Google Scholar 

  • Peirart ME, Najdovski T, Appelboom TE, Deschodt-Lanckmann MM (1988) Effect of human endopeptidase-24.11 (“enkephalinase”) on IL-1-induced thymocyte proliferation activity. J Immunol 140:3808–3811

    Google Scholar 

  • Poole S, Bird TA, Selkirk S, Gaines-Das RE, Choudry Y, Stephenson SL, Kenny AJ, Saklatvala J (1990) Fate of injected interleukin-1 in rats: sequestration and degradation in kidney. Cytokine 2:416–422

    Article  PubMed  CAS  Google Scholar 

  • Raftery MA, Hunkapillar MW, Strader CD, Hood LE (1980) Acetylcholine receptor: complex of homologous subunits. Science 208:1454–1457

    Article  PubMed  CAS  Google Scholar 

  • Ritz J, Pesando JM, Notis-McConarty J, Lazarus H, Schlossman SF (1980) A monoclonal antibody to human acute lymphoblastic leukemia antigen. Nature 283:583–585

    Article  PubMed  CAS  Google Scholar 

  • Roques BP, Beaumont A (1990) Neutral endopeptidase-24.11 inhibitors: from analgesics to antihypertensives. Trends Pharmacol Sci 11: 245–249

    Article  PubMed  CAS  Google Scholar 

  • Scholz W, Mentlein R, Heymann E, Feller AC, Flad HD (1985) Interleukin-2 production by human T lymphocytes identified by antibodies to dipeptidyl peptidase IV. Cell Immunol 89:11–19

    Google Scholar 

  • Schon E, Mansfeld HW, Demuth HU, Barth A, Ansorge S (1985) The dipeptidyl peptidase IV, a membrane enzyme involved in the proliferation of T lymphocytes. Biomed Biochim Acta 44:K9–K15

    PubMed  CAS  Google Scholar 

  • Shipp MA, Richardson NE, Sayre PH, Brown NR, Masteller EL, Clayton LK, Ritz J, Reinherz EL (1988) Molecular cloning of the common acute lymphoblastic leukemia antigen (CALLA) identifies a type II integral membrane protein. Proc Natl Acad Sci USA 85:4819–4823

    Article  PubMed  CAS  Google Scholar 

  • Shipp MA, Vijayaraghavan J, Schmidt EV, Masteller EL, D’Adamio L, Hersh LB, Reinherz EL (1989) Common acute lymphoblastic leukemia antigen (CALLA) is active neutral endopeptidase 24.11 (“enkephalinase”):direct evidence by cDNA transfection analysis. Proc Natl Acad Sci USA 86:297–301

    Article  PubMed  CAS  Google Scholar 

  • Shipp MA, Stefano GB, D’Adamio L, Switzer SN, Howard FD, Sinisterra J, Scharrer B, Reinherz EL (1990) Down-regulation of enkephalin mediated inflammatory responses by CD10/neutral endopeptidase 24.11. Nature 347:394–396

    Article  PubMed  CAS  Google Scholar 

  • Smith EM, Blalock JE (1981) Human lymphocyte production of ACTH and endorphin-like substances: associated with leukocyte interferon. Proc Natl Acad Sci USA 78:7530–7534

    Article  PubMed  CAS  Google Scholar 

  • Stefano GB, Leung MK, Zhao X, Scharrer B (1989a) Evidence for the involvement of opioid neuropeptides in the adherence and migration of immunocompetent invertebrate hemocytes. Proc Natl Acad Sci USA 86:626–630

    Article  CAS  Google Scholar 

  • Stefano GB, Cadet P, Scharrer B (1989b) Stimulatory effects of opioid neuropeptides on locomotory activity and conformational changes in invertebrate and human immunocytes: evidence for a subtype of opioid receptor. Proc Natl Acad Sci USA 86:6307–6311

    Article  CAS  Google Scholar 

  • Stefano GB, Shipp MA, Scharrer B (1991) A possible immunoregulatory function for Metenkephalin-Arg6-Phe7 involving human and invertebrate granulocytes. J Neuroimmunol 31: 97–103

    Article  PubMed  CAS  Google Scholar 

  • Stephenson SL, Kenny AJ (1987) The hydrolysis of human atrial natriuretic peptide by pig kidney microvillar membranes is initiated by endopeptidase-24.11. Biochem J 243:183–187

    PubMed  CAS  Google Scholar 

  • Thorsett ED, Wyvratt MJ (1987) Inhibition of zinc peptidases that hydrolyse neuropeptides. In: Turner AJ (ed) Neuropeptides and their peptidases. VCH, New York, pp 229–292

    Google Scholar 

  • Tredosiewicz LK, Malizia G, Oakes J, Losowsky M, Janossy G (1985) Expression of the common acute lymphoblastic leukemia antigen (CALLA, gp100) in the brush border of normal jejunum and jejunum of patients with coeliac disease. J Clin Pathol 38:1002–1006

    Article  Google Scholar 

  • Turner AJ (ed) (1987) Neuropeptides and their peptidases. Ellis Horwood, Chichester

    Google Scholar 

  • Turner AJ, Dowdall MJ (1984) The metabolism of neuropeptides: both phosphoramidon-sensitive and captopril—sensitive metallopeptidases are present in the electric organ of Torpedo marmorata. Biochem J 222:255–259

    PubMed  CAS  Google Scholar 

  • Turner AJ, Matsas R, Kenny AJ (1985) Are there neuropeptide-specific peptidases? Biochem Pharmacol 34:1347–1356

    Article  PubMed  CAS  Google Scholar 

  • Turner AJ, Hooper NM, Kenny AJ (1987) Neuropeptide metabolism. In: Kenny AJ, Turner AJ (eds) Mammalian ectoenzymes. Elsevier, Amsterdam, 211–248

    Google Scholar 

  • Ulmer AJ, Matter T, Feller AC, Heymann E, Flad H–D (1989) T1119–4–7 and 4EL1C7 but not B1.19.2 (all clustered in CDw26) bind to dipeptidyl peptidase IV (DPP–IV). 7th international congress of immunology. Fisher, Stuttgart, p 151 (abstract)

    Google Scholar 

  • Van Epps DE, Kutvirt SJ (1987) Modulation of human neutrophil adherence by ß-endorphin and Met-enkephalin. J Neuroimmunol 15:219–228

    Article  PubMed  Google Scholar 

  • Van Epps DE, Saland L (1984) ß-endorphin and Met-enkephalin stimulate human peripheral blood mononuclear cell chemotaxis. J Immunol 132:3046–3053

    PubMed  Google Scholar 

  • Venturelli F, Roscetti G, Posssenti R, Vita F, Roda LG (1985) Peripheral enkephalin hydrolysis in different animal species: a comparative study. Neurochem Res 10:333–342

    Article  PubMed  CAS  Google Scholar 

  • Vogel Z, Altstein M (1979) The effect of puromycin on the biological activity of Leu-enkephalin. FEBS Lett 98:44–47

    Article  PubMed  CAS  Google Scholar 

  • Vogt-Schaden M, Ciagelmann M, Hock D, Herbst F, Forssmann WG (1989) Degradation of porcine brain natriuretic peptide (pBNP-26) by endoprotease-24.11 from kidney cortical membranes. Biochem biophys Res Commun 161:1177–1183

    Article  PubMed  CAS  Google Scholar 

  • Welch PA, Burrows PD, Gillis S, Cooper MD (1990) J Cell Biochem [Suppl] 14D:267 (abstract)

    Google Scholar 

  • Wilk S (1986) Neuropeptide-specific peptidases: does brain contain a specific TRH-degrading enzyme? Life Sci 39:1487–1492

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Tidmarsh GF, Welch PA, Pierce JH, Weissman IL, Cooper MD (1989) The early B lineage antigen BP-1 and the transformation-associated antigen 6C3 are on the same molecule. J Immunol 143:3303–3308

    PubMed  CAS  Google Scholar 

  • Wu Q, Lahti JM, Air GM, Burrows PD, Cooper MD (1990) Molecular cloning of the murine BP-1/6C3 antigen: a member of the zinc-dependent metallopeptidase family. Proc Natl Acad Sci USA 87:993–997

    Article  PubMed  CAS  Google Scholar 

  • Wu Q, Li L, Cooper MD, Pierres M, Gorvel JP (1991) Aminopeptidase A activity of the murine B-lymphocyte differentiation antigen BP-1/6C3. Proc Natl Acad Sci USA 88:676–680

    Article  PubMed  CAS  Google Scholar 

  • Yamada R, Mizutani S, Kuranchi O, Okono K, Imaizumi H, Narita O, Tomoda Y (1988) Purification and characterization of human placental aminopeptidase A. Enzyme 40:223–230

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Turner, A.J., Leung, M.K., Stefano, G.B. (1994). Degradation of Neuropeptide Signal Molecules in Immunocytes of Vertebrates and Invertebrates. In: Scharrer, B., Smith, E.M., Stefano, G.B. (eds) Neuropeptides and Immunoregulation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78480-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78480-4_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78482-8

  • Online ISBN: 978-3-642-78480-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics