Advertisement

Study of ± J Ising Spin Glasses via Multicanonical Ensemble

  • T. Celik
  • U. H. E. Hansmann
  • B. Berg
Part of the Springer Proceedings in Physics book series (SPPHY, volume 76)

Abstract

We performed numerical simulations of 2D and 3D Edwards-Anderson spin glass models by using the recently developed multicanonical ensemble. Our ergodicity times increase with the lattice size approximately as V 3. The energy, entropy and other physical quantities are easily calculable at all temperatures from a single simulation. Their finite size scalings and the zero temperature limits are also explored.

Keywords

Spin Glass High Energy Barrier Finite Size Scaling Groundstate Energy Order Parameter Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    R.N. Bhatt and A.P. Young, Phys. Rev. B37 (1988) 5606ADSGoogle Scholar
  2. A.T. Ogielski, Phys. Rev. B32 (1985) 7384ADSGoogle Scholar
  3. A.J. Bray and M.A. Moore, Phys. Rev. B31 (1985) 631ADSGoogle Scholar
  4. W.J. McMillan, Phys. Rev. B30 (1984) 476; 31 (1985) 340Google Scholar
  5. S. Kirkpatrick, Phys. Rev. B16 (1977) 4630.ADSGoogle Scholar
  6. [2]
    K. Binder and A.P. Young, Rev. Mod. Phys. 58 (1986) 801CrossRefADSGoogle Scholar
  7. K.H. Fisher and J.A. Hertz, Spin Glasses, Cambridge Univ. Press 1991.CrossRefGoogle Scholar
  8. [3]
    S. Caracciolo, G. Parisi, S. Patarnello and N. Sourlas, Europhysics Letters 11 (1990) 783; J. Phys. France 51 (1990) 1877.CrossRefGoogle Scholar
  9. [4]
    G. Parisi, Phys. Rev. Lett. 43 (1979) 1754; J. Phys. A13 (1980) 1101.CrossRefADSGoogle Scholar
  10. [5]
    D.A. Fisher and D.A. Huse, Phys. Rev. Lett. 56 (1986) 1601CrossRefADSGoogle Scholar
  11. D.A. Fisher and D.A. Huse, Phys. Rev. B38 (1988) 386.ADSGoogle Scholar
  12. [6]
    D.A. Fisher and D.A. Huse, J. de Physique I (1991) 621.Google Scholar
  13. [7]
    B. Berg and T. Neuhaus, Phys. Rev. Lett. 68 (1992) 9; Phys. Lett. B267 (1991) 249CrossRefADSGoogle Scholar
  14. G.M. Torrie and J.P. Valleu, J. Comput. Phys. 23 (1977) 187.CrossRefADSGoogle Scholar
  15. [8]
    A. E. Ferdinand and M. E. Fisher, Phys. Rev. 185 (1969) 832.CrossRefADSGoogle Scholar
  16. [9]
    B. Berg and T. Celik, Phys. Rev. Lett. 69 (1992) 2292; Int. J. Mod. Phys. C 3 (1992) 1251; B. Berg, T. Celik and U. Hansmann, to appear in Europhys. Lett.CrossRefADSGoogle Scholar
  17. [10]
    R. H. Swendsen and J. S. Wang, Phys. Rev. B38 (1988) 4840.ADSGoogle Scholar
  18. [11]
    H. F. Cheng and W. L. McMillan, J. Phys. C16 (1983) 7027.ADSGoogle Scholar
  19. [12]
    I. Morgenstern and K. Binder, Z. Physik B39 (1980) 227ADSMathSciNetGoogle Scholar
  20. S. Kirkpatrick, Phys. Rev. B16 (1977) 4630.ADSGoogle Scholar
  21. [13]
    B. Berg, T. Celik and U. Hansmann, in preparation.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • T. Celik
    • 1
    • 2
  • U. H. E. Hansmann
    • 1
    • 3
  • B. Berg
    • 1
    • 3
    • 4
  1. 1.Supercomputer Computations Research InstituteFlorida State UniversityTallahasseeUSA
  2. 2.Department of Physics EngineeringHacettepe UniversityBeytepe, AnkaraTurkey
  3. 3.Department of PhysicsFlorida State UniversityTallahasseeUSA
  4. 4.Wissenschaftskolleg zu BerlinBerlinGermany

Personalised recommendations