An Introduction to the Biochemistry and Biology of Blood Lipids and Lipoproteins

  • J. R. Patsch
Part of the Handbook of Experimental Pharmacology book series (HEP, volume 109)

Abstract

Atherosclerotic coronary heart disease (CHD) is a leading cause of death and disability in industrialized countries. Epidemiologic evidence has linked changes in blood lipids such as elevated cholesterol, elevated low-density lipoprotein (LDL) cholesterol, or decreased high-density lipoprotein (HDL) cholesterol to the development of CHD. This evidence has been supported by animal studies showing that the progression and regression of atherosclerotic lesions correlate with the rise and fall of cholesterol, respectively.

Keywords

Hydrolysis Estrogen Codon Foam Heparin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Albers JJ, Tollefson JH, Chen CII, Steinmetz A (1984) Isolation and characterization of human plasma lipid transfer proteins. Arteriosclerosis 4:49–58PubMedGoogle Scholar
  2. Andersen JM, Turley SD, Dietschy JM (1979) Low and high density lipoproteins and chylomicrons as regulators of rate of cholesterol synthesis in rat liver in vivo. Proc Natl Acad Sci USA 76:165–169PubMedGoogle Scholar
  3. Angelin B, Raviola CA, Innerarity TL, Mahley RW (1983) Regulation of hepatic lipoprotein receptors in the dog. Rapid regulation of apolipoprotein B,E receptors, but not of apolipoprotein E receptors, by intestinal lipoproteins and bile acids. J Clin Invest 71:816–831Google Scholar
  4. Aron L, Jones S, Fielding CJ (1978) Human plasma lecithin-cholesterol acyltransferase. J Biol Chem 253:7220–7226PubMedGoogle Scholar
  5. Assmann G, Gotto AM Jr, Paoletti R (1991) The hypertriglyceridemias: risk and management. Am J Cardiol 68:1A–42APubMedGoogle Scholar
  6. Atkinson D, Small DM (1986) Recombinant lipoproteins: implications for structure and assembly of native lipoproteins. Annu Rev Biophys Biophys Chem 15: 403–456PubMedGoogle Scholar
  7. Auwerx JH, Babirak SP, Fujimoto WY, Iverius P-H, Brunzell JD (1989) Defective enzyme protein in lipoprotein lipase deficiency. Eur J Clin Invest 19:433–437PubMedGoogle Scholar
  8. Ballantyne FC, Clark RS, Simpson HS, Ballantyne D (1982) High density and low density lipoprotein subfractions in survivors of myocardial infarction and in control subjects. Metabolism 31:433–437PubMedGoogle Scholar
  9. Barker WC, Dayhoff MO (1977) Evolution of lipoproteins deduced from protein sequencing data. Comp Biochem Physiol 576:309–315Google Scholar
  10. Barter PJ, Hopkins GJ, Calvert GD (1982) Transfers and exchanges of esterified cholesterol between plasma lipoproteins. Biochem J 208:1–7PubMedGoogle Scholar
  11. Bates SR, Murphy PL, Feng ZC, Kanazawa T, Getz GS (1984) Very low density lipoproteins promote triglyceride accumulation in macrophages. Arteriosclerosis 4:103–114PubMedGoogle Scholar
  12. Blankenhorn DH, Nessim SA, Johnson RL, Sanmarco ME, Azen SP, CashinHemphill L (1987) Beneficial effects of combined colestipol-niacin therapy on coronary atherosclerosis and coronary venous bypass grafts. JAMA 257: 3233–3240PubMedGoogle Scholar
  13. Boguski MS, Freeman M, Elshourbagy NA, Taylor JM, Gordon JI (1986) On computer-assisted analysis of biological sequences: proline punctation, consensus sequences, and apolipoprotein repeats. J Lipid Res 27:1011–1034PubMedGoogle Scholar
  14. Bradley WA, Gotto AM Jr (1978) Structure of intact human plasma lipoproteins. In: Dietschy JM, Gotto AM Jr, Ontko JA (eds) Disturbances in lipid and lipoprotein metabolism. American Physiology Society, Bethesda, pp 111–137Google Scholar
  15. Breckenridge WC, Little JA, Steiner G, Chow A, Poapst M (1978) Hypertriglyceridemia associated with deficiency of apolipoprotein C-II. N Engl J Med 298:1265–1273PubMedGoogle Scholar
  16. Breckenridge WC, Little JA, Alaupovic P, Wang CS, Kuksis A, Kakis G, Lindgren F, Gardiner G (1982) Lipoprotein abnormalities associated with a familial deficiency of hepatic lipase. Atherosclerosis 45:161–179PubMedGoogle Scholar
  17. Brensike JF, Levy RI, Kelsey SF, Passamani ER, Richardson JM, Loh IK et al. (1984) Effects of therapy with cholestyramine on progression of coronary arteriosclerosis: results of the NHLBI Type II Coronary Intervention Study. Circulation 69:313–324PubMedGoogle Scholar
  18. Brown G, Albers JJ, Fisher LD, Schaefer SM, Lin JT, Kaplan C et al. (1990) Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N Engl J Med 323: 1289–1298PubMedGoogle Scholar
  19. Brown ML, Inazu A, Hesler CB, Agellon LB, Mann C, Whitlock ME et al. (1989) Molecular basis of lipid transfer protein deficiency in a family with increased high-density lipoproteins. Nature 342:448–451PubMedGoogle Scholar
  20. Brown MS, Goldstein JL (1986) A receptor-mediated pathway for cholesterol homeostasis. Science 232:34–47PubMedGoogle Scholar
  21. Buchwald H, Varco RL, Mattis JP, Long JM, Fitch LL, Campbell GS, Pearce MB, Yellin AE, Edmiston WA, Smink RD, Sawin HS, Campos CT, Hansen BJ, Tuna N, Karnegis JN, Sanmarco ME, Amplatz KA, Castaneda-Zuniga WR, Hunter DW, Bissett JK, Weber JF, Stevenson JW, Leon AS, Chalmers TC, Posch Group (1990) Effect of partial ileal bypass surgery on mortality and morbidity from coronary heart disease in patients with hypercholesterolemia. N Engl J Med 323:946–955PubMedGoogle Scholar
  22. Burstein M, Scholnick HR, Morfin R (1970) Rapid method for the isolation of lipoproteins from human serum by precipitation with polyanions. J Lipid Res 11:583–595PubMedGoogle Scholar
  23. Canner PL, Berge KG, Wenger NK, Stamler J, Friedman L, Prineas RJ et al. (1986) Fifteen year mortality in Coronary Drug Project patients: long-term benefit with niacin. J Am Coll Cardiol 8:1245–1255PubMedGoogle Scholar
  24. Cashin-Hemphill L, Mack WJ, Pogoda JM, Sanmarco ME, Azen SP, Blankenhorn DH (1990) Beneficial effects of colestipol-niacin on coronary atherosclerosis. A 4-year follow-up. JAMA 264:3013–3017PubMedGoogle Scholar
  25. Consensus Conference (1985) Lowering blood cholesterol to prevent heart disease. JAMA 253:2080–2086Google Scholar
  26. Cox DW, Breckenridge WC, Little JA (1978) Inheritance of apolipoprotein C-II deficiency with hypertriglyceridemia and pancreatitis. N Engl J Med 299: 1421–1424PubMedGoogle Scholar
  27. Chen SH, Habib G, Yang CY, Gu ZW, Lee BR, Weng SA et al. (1987) Apolipoprotein B-48 is the product of a messenger RNA with an organ-specific in-frame stop codon. Science 238:363–366PubMedGoogle Scholar
  28. Deeb S, Peng R (1989) Structure of the human lipoprotein lipase gene. Biochemistry 28:4131–4135PubMedGoogle Scholar
  29. Eckel RH (1989) Lipoprotein lipase: a multifunctional enzyme relevant to common metabolic diseases. N Engl J Med 320:1060–1067PubMedGoogle Scholar
  30. Edelstein C, Kezdy F, Scanu AM, Shen BW (1979) Apolipoproteins and the structural organization of plasma lipoproteins: human plasma high density lipoprotein-3. J Lipid Res 20:143–153PubMedGoogle Scholar
  31. Eisenberg S (1984) High density lipoprotein metabolism. J Lipid Res 25:1017–1058PubMedGoogle Scholar
  32. Expert Panel (1988) Report of the National Cholesterol Education Program Expert Panel on detection, evaluation, and treatment of high blood cholesterol in adults. Arch Intern Med 148:36–69Google Scholar
  33. Fong LG, Parthasarathy S, Witztum JL, Steinberg D (1987) Nonenzymatic oxidative cleavage of peptide bonds in apoprotein B-100. J Lipid Res 28:1466–1477PubMedGoogle Scholar
  34. Fredrickson DS, Levy RI, Lees RS (1967) Fat transport in lipoproteins: an integrated approach to mechanisms and disorders. N Engl J Med 276:148–56 contd.PubMedGoogle Scholar
  35. Frick MH, Elo O, Haapa K, Heinonen OP, Heinsalmi P, Helo P et al. (1987) Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med 317:1237–1245PubMedGoogle Scholar
  36. Gofman JW, Lindgren FT, Elliott H (1949) Ultracentrifugal studies of lipoproteins. J Biol Chem 179:973PubMedGoogle Scholar
  37. Glomset JA (1968) The plasma lecithin: cholesterol acyltransferase reaction. J Lipid Res 9:155–167PubMedGoogle Scholar
  38. Glomset JA (1972) Plasma lecithin: cholesterol acyltransferase. In: Nelson G (ed) Blood lipids and lipoproteins: quantitation, composition, and metabolism. WileyInterscience, New York, pp 745–787Google Scholar
  39. Glomset JA, Norum KR (1973) The role of lecithin: cholesterol acyltransferase: perspectives from pathology. Adv Lipid Res 11:1–65Google Scholar
  40. Goodman DS, Deyykin D, Shiratori T (1964) The formation of cholesterol esters with rat liver enzymes. Characterization of cofactor-dependent phospholipase activity. J Biol Chem 239:1335–1345PubMedGoogle Scholar
  41. Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR (1977) High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am J Med 62:707–714PubMedGoogle Scholar
  42. Gotto AM Jr, Pownall HJ, Havel RJ (1986) Introduction to the plasma lipoproteins. Methods Enzymol 128:3–41PubMedGoogle Scholar
  43. Groot PHE, Van Stiphout WAHJ, Krauss XH, Jansen H, Van Tol A, Van Ramshorst E, Chin-On S, Hofman A, Cresswell SR, Havekers L (1991) Postprandial lipoprotein metabolism in normolipidemic men with and without coronary artery disease. Arterioscler Thromb 11:653–662PubMedGoogle Scholar
  44. Hamilton RL, Williams MC, Fielding CJ, Havel RJ (1976) Discoidal bilayer structure of nascent high density lipoproteins from perfused rat liver. J Clin Invest 58:667–680PubMedGoogle Scholar
  45. Havel RJ, Eder HA, Bragdon JH (1955) Distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J Clin Invest 34: 1345PubMedGoogle Scholar
  46. Havel RJ, Shore VG, Shore B, Bier DM (1970) Role of specific glycopeptides of human serum lipoproteins in the activation of lipoprotein lipase. Circ Res 27:595PubMedGoogle Scholar
  47. Hayden MR, Ma Y, Brunzell J, Henderson HE (1991) Genetic variants affecting human lipoprotein and hepatic lipases. Curr Opin Lipidol 2:104–109Google Scholar
  48. Higuchi K, Monge JC, Lee N, Law SW, Brewer HB Jr, Sakaguchi AY et al. (1987) The human apoB-100 gene: apoB-100 is encoded by a single copy gene in the human genome. Biochem Biophys Res Commun 144:1332–1339PubMedGoogle Scholar
  49. Inazu A, Brown ML, Hesler CB, Agellon LB, Koizumi J, Takata K et al. (1990) Increased high-density lipoprotein levels caused by a common cholesteryl-ester transfer protein gen mutation. N Engl J Med 323:1234–1238PubMedGoogle Scholar
  50. Jackson RL (1983) Lipoprotein lipase and hepatic lipase. In: Boyer PD (ed) The enzymes, vol 16. Academic, New York, pp 141–181Google Scholar
  51. Johansson J, Carlson LA, Landou C, Hamsten A (1991) High density lipoproteins and coronary atherosclerosis. A strong inverse relation with the largest particles is confined to normotriglyceridemic patients. Arterioscler Thromb 11:174–182PubMedGoogle Scholar
  52. Kelley JL, Kruski AW (1986) Density gradient ultracentrifugation of serum lipoproteins in a swinging bucket rotor. Methods Enzymol 128:170–181PubMedGoogle Scholar
  53. Knott TJ, Pease RJ, Powell LM, Wallis SC, Rall SC Jr, Innerarity TL et al. (1986) Complete protein sequence and identification of structural domains of human apolipoprotein B. Nature 323:734–738PubMedGoogle Scholar
  54. Kodama T, Freeman M, Rohrer L, Zabrecky J, Matsudaira P, Krieger M (1990) Type I macrophage scavenger receptor contains alpha-helical and collagen-like coiled coils. Nature 343:531–535PubMedGoogle Scholar
  55. Koo C, Wernette-Hammond ME, Garcia Z et al. (1988) Uptake of cholesterol-rich remnant lipoproteins by human monocyte-derived macrophages is mediated by low density lipoprotein receptors. J Clin Invest 81:1332–1340PubMedGoogle Scholar
  56. Lalouel J-M, Wilson DE, Iverius P-H (1992) Lipoprotein lipase and hepatic triglyceride lipase: molecular and genetic aspects. Curr Opin Lipidol 3:86–95Google Scholar
  57. LaRosa JC, Levy RI, Herbert P, Lux SE, Fredrickson DS (1970) A specific apoprotein activator for lipoprotein lipase. Biochem Biophys Res Commun 41: 57–62Google Scholar
  58. LaRosa JC, Hunninghake D, Bush D, Criqui MH, Getz GS, Gotto AM Jr et al. (1990) The cholesterol facts. A summary of the evidence relating dietary fats, serum cholesterol, and coronary heart disease. A joint statement by the American Heart Association and the National Heart, Lung, and Blood Institute. The Task Force on Cholesterol Issues, American Heart Association. Circulation 81:1721–1733Google Scholar
  59. Lees RS, Hatch FT (1963) Sharper separation of lipoprotein species by paper electrophoresis in albumin-containing buffer. J Lab Clin Med 61:518PubMedGoogle Scholar
  60. Lipid Research Clinics Program (1984a) The Lipid Research Clinics Coronary Primary Prevention Trial results: I. Reduction in incidence of coronary heart disease. JAMA 251:351–364Google Scholar
  61. Lipid Research Clinics Program (1984b) The Lipid Research Clinics Coronary Primary Prevention Trial results: II. The relationship of reduction in incidence of coronary heart disease to cholesterol lowering. JAMA 251:365–374Google Scholar
  62. Luo CC, Li WH, Moore MN, Chan L (1986) Structure and evolution of the apolipoprotein multigene family. J Mol Biol 187:325–340PubMedGoogle Scholar
  63. Macheboeuf MA (1929) Recherches sur les phosphoaminolipides et les sterides du serum et du plasma sanguins: entrainement des phospholipides, des sterols et des sterides par les diverses fractions au cours du fractionnement des proteides du serum. Bull Soc Chim Biol 11:268Google Scholar
  64. Massey JB, Gotto AM Jr, Pownall HJ (1982) Kinetics and mechanism of the spontaneous transfer of fluorescent phosphatidylcholines between apolipoproteinphospholipid recombinants. Biochemistry 21:3630–3636PubMedGoogle Scholar
  65. McLean LR, Philips MC (1981) Mechanism of cholesterol and phosphatidylcholine exchange or transfer between unilamellar vesicles. Biochemistry 20:2893–2900PubMedGoogle Scholar
  66. Miesenböck G, Patsch JR (1991) Coronary artery disease: synergy of triglyceride-rich lipoproteins and HDL. Cardiovasc Risk Fact 1:293Google Scholar
  67. Miesenböck G, Patsch JR (1992) Postprandial hyperlipidemia: the search for the atherogenic lipoprotein. Curr Opin Lipid 3:196–201Google Scholar
  68. Mitchinson MJ, Ball RY, Carpenter KLH, Parums DV (1988) Macrophages and ceroid in atherosclerosis. In: Suckling KE, Groot PHE (eds) Hyperlipidaemia and atherosclerosis. Academic, London, p 117Google Scholar
  69. Monsalve MV, Henderson HE, Roederer G et al. (1990) A missense mutation at codon 188 of the human lipoprotein lipase gene is a frequent cause of lipoprotein lipase deficiency in persons of different ancestries. J Clin Invest 86: 728–734PubMedGoogle Scholar
  70. Morton RE, Zilversmit DB (1983) Inter-relationship of lipids transferred by the lipid-transfer protein isolated from human lipoprotein-deficient plasma. J Biol Chem 258:11751–11757PubMedGoogle Scholar
  71. Nilsson-Ehle P, Garfinkel AS, Schotz MC (1980) Lipolytic enzymes and plasma lipoprotein metabolism. Annu Rev Biochem 49:667–693PubMedGoogle Scholar
  72. Olivecrona T, Bengtsson-Olivecrona G (1989) Heparin and lipases. In: Lane DA, Lindahl U (eds) Heparin. Arnold, London, pp 335–361Google Scholar
  73. Oncley JL (1963) Brain lipids and lipoproteins and leukodystrophies. Elsevier, AmsterdamGoogle Scholar
  74. Ornish D, Brown SE, Scherwitz LW, Billings JH, Armstrong WT, Ports TA, McLanahan SM, Kirkeeide RL, Brand RJ, Gould KL (1990) Can lifestyle changes reverse coronary heart disease? The Lifestyle Heart Trial. Lancet 336: 129–133PubMedGoogle Scholar
  75. Palinski W, Rosenfeld ME, Yla Herttuala S, Gurtner GC, Socher SS, Butler SW et al. (1989) Low density lipoprotein undergoes oxidative modification in vivo. Proc Natl Acad Sci USA 86:1372–1376PubMedGoogle Scholar
  76. Parums D, Mitchinson MJ (1981) Demonstration of immunoglobulin in the neigh- bourhood of advanced atherosclerotic plaques. Atherosclerosis 38:211–216PubMedGoogle Scholar
  77. Patsch JR (1987) Postprandial lipaemia. Baillieres Clin Endocrinol Metab 1:551–580PubMedGoogle Scholar
  78. Patsch JR (1991) Postprandial dyslipidemia and coronary artery disease. In: Gotto AM Jr, Paoletti R (eds) Atherosclerosis reviews, vol 22. Raven, New York, pp 47–49Google Scholar
  79. Patsch JR, Gotto AM Jr (1987) Metabolism of high density lipoproteins. In: Gotto AM Jr (ed) Plasma lipoproteins, new comprehensive biochemistry, vol 14. Elsevier, Amsterdam, pp 221–259Google Scholar
  80. Patsch JR, Gotto AM Jr (1989) Biochemistry of lipid regulation. In: Hurst JW (ed) The heart. McGraw Hill, New York, pp 106–111Google Scholar
  81. Patsch JR, Patsch W (1986) Zonal ultracentrifugation. Methods Enzymol 129:3–26PubMedGoogle Scholar
  82. Patsch JR, Sailer S, Kostner G, Sandhofer F, Holasek A, Braunsteiner H (1974) Separation of the main lipoprotein density classes from human plasma by rate-zonal ultracentrifugation. J Lipid Res 15:356–366PubMedGoogle Scholar
  83. Patsch JR, Gotto AM Jr, Olivercrona T, Eisenberg S (1978) Formation of high density lipoprotein2-like particles during lipolysis of very low density lipoproteins in vitro. Proc Natl Acad Sci USA 75:4519–4523PubMedGoogle Scholar
  84. Patsch JR, Karlin JB, Scott LW, Smith LC, Gotto AM Jr (1983) Inverse relationship between blood levels of high density lipoprotein subfraction 2 and magnitude of postprandial lipemia. Proc Natl Acad Sci USA 80:1449–1453PubMedGoogle Scholar
  85. Patsch JR, Prasad S, Gotto AM Jr, Bengtsson-Olivecrona G (1984) Postprandial lipemia. A key for the conversion of high density lipoprotein2 into high density lipoprotein3 by hepatic lipase. J Clin Invest 74:2017–2023PubMedGoogle Scholar
  86. Patsch JR, Prasad S, Gotto AM Jr, Patsch W (1987) High density lipoprotein2. Relationship of the plasma levels of this lipoprotein species to its composition, to the magnitude of postprandial lipemia, and to the activities of lipoprotein lipase and hepatic lipase. J Clin Invest 80:341–347PubMedGoogle Scholar
  87. Patsch JR, Miesenböck G, Hopferwieser T, Mühlberger V, Knapp E, Dunn JK, Gotto AM Jr, Patsch W (1992) The relationship of triglyceride metabolism and coronary artery disease: studies in the postprandial state. Arterioscler Thromb 12:1336–1345PubMedGoogle Scholar
  88. Patsch W, Schonfeld G, Gotto AM Jr, Patsch JR (1980) Characterization of human high density lipoproteins by zonal ultrazentrifugation. J Biol Chem 255: 3178–3185PubMedGoogle Scholar
  89. Patsch W, Patsch JR, Gotto AM Jr (1989) The hyperlipoproteinemias. Med Clin N Am 73(4):859–893PubMedGoogle Scholar
  90. Segrest JP, Morrisett JD, Jackson RL, Gotto AM Jr (1974) A molecular theory of lipid-protein interactions in the plasma lipoproteins. FEBS Lett 38:247–253PubMedGoogle Scholar
  91. Shirai K, Barnhart RL, Jackson RL (1981) Hydrolysis of human plasma high density lipoproteins2 phospholipids and triglycerides by hepatic lipase. Biochem Biophys Res Commun 100:591–599PubMedGoogle Scholar
  92. Simpson HS, Williamson CM, Olivecrona T, Pringle S, Maclean J, Lorimer AR, Bonnefous F, Bogaievsky Y, Packard CJ, Shepherd J (1990) Postprandial lipemia fenofibrate and coronary artery disease. Atherosclerosis 85:193–202PubMedGoogle Scholar
  93. Small DM, Shipley GG (1974) Physical-chemical basis of lipid deposition in atherosclerosis. The physical state of the lipids helps to explain lipid deposition and lesion reversal in atherosclerosis. Science 185:222–229PubMedGoogle Scholar
  94. Smith LC, Massey JB, Sparrow JT, Gotto AM Jr, Pownall HJ (1983) Structure and dynamics of lipoproteins. In: Pifet G, Herak JN (eds) Supramolecular structure and function. Plenum Publishing, New York, pp 205–244Google Scholar
  95. Sparkes RS, Zollman S, Klisak I, Kirchgessner TG, Komaromy MC, Mohandas T, Schotz MC, Lusis AJ (1987) Human genes involved in lipolysis of plasma lipoproteins: mapping of loci for lipoprotein lipase to 8p22 and hepatic lipase to 15q21. Genomics 1:138–144PubMedGoogle Scholar
  96. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL (1989) Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 320:915–924PubMedGoogle Scholar
  97. Steinbrecher UP (1987) Oxidation of human low density lipoprotein results in derivatization of lysine residues of apolipoprotein B by lipid peroxide decomposition products. J Biol Chem 262:3603–3608PubMedGoogle Scholar
  98. Steinbrecher UP, Witztum JL (1984) Glucosylation of low-density lipoproteins to an extent comparable to that seen in diabetes slows their catabolism. Diabetes 33:130–134PubMedGoogle Scholar
  99. Steinbrecher UP, Witztum JL, Pathasarathy S, Steinberg D (1987) Decrease in reactive amino groups during oxidation or endothelial cell modification of LDL. Correlation with changes in receptor-mediated catabolism. Arteriosclerosis 7:135–143PubMedGoogle Scholar
  100. Study Group, European Atherosclerosis Society (1987) Strategies for prevention of coronary heart disease: a policy statement of the Eurpean Atherosclerosis Society. Eur Heart J 8:77–88Google Scholar
  101. Study Group, European Atherosclerosis Society (1988) The recognition and management of hyperlipidaemia in adults: a policy statement of the European Atherosclerosis Society. Eur Heart J 9:571–600Google Scholar
  102. Sviridov DD, Safonova IG, Talalaev AG, Repin VS, Smirnov VN (1986) Regulation of cholesterol synthesis in isolated epithelial cells of human small intestine. Lipids 21:759–763PubMedGoogle Scholar
  103. Tall AR (1986) Plasma lipid transfer proteins, J Lipid Res 27:361–367PubMedGoogle Scholar
  104. Wion KL, Kirchgessner TG, Lusis AJ, Schotz MC, Lawn RM (1987) Human lipo-protein lipase complementary DNA sequence. Science 235:1638–1641PubMedGoogle Scholar
  105. Yang CY, Chen SH, Gianturco SH, Bradley WA, Sparrow JT, Tanimura M et al. (1986) Sequence, structure, receptor-binding domains and internal repeats of human apolipoprotein B-100. Nature 323:738–742PubMedGoogle Scholar
  106. Zilversmit DB (1979) Atherogenesis: a postprandial phenomenon. Circulation 60: 473–485PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • J. R. Patsch

There are no affiliations available

Personalised recommendations