Skip to main content

Strength Changes in Hemiparesis: Measurements and Mechanisms

  • Conference paper
Book cover Spasticity

Abstract

This chapter is concerned, first, with describing the changes in voluntary muscle strength which occur following hemiparesis and, second, with a brief consideration of some of the central and peripheral factors which contribute to the absolute forces measured in hemiparesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams RW, Gandevia SC, Skuse NF (1990) The distribution of muscular weakness in upper motoneurone lesions affecting the lower limb. Brain 113:1459–1476

    Article  PubMed  Google Scholar 

  • Bauswein E, Fromm C, Werner W, Ziemann U (1991) Phasic and tonic responses of premotor and primary motor cortex neurons to torque changes. Exp Brain Res 86:303–310

    Article  PubMed  CAS  Google Scholar 

  • Bohannon RW (1987) Relationship between static strength and various other measures in hemiparetic stroke patients. Int Rehabil Med 8:125–128

    PubMed  CAS  Google Scholar 

  • Bohannon RW (1988) Muscle strength changes in hemiparetic stroke patients during inpatient rehabilitation. J Neurol Rehabil 2:163–166

    Google Scholar 

  • Bohannon RW (1990) Significant relationships exist between muscle group strengths following stroke. Clin Rehabil 4:27–31

    Article  Google Scholar 

  • Bohannon RW, Smith MB (1987) Assessment of strength deficits in eight paretic upper extremity muscle groups of stroke patients with hemiplegia. Phys Ther 67:522–525

    PubMed  CAS  Google Scholar 

  • Broadbent WH (1866) On a case of right hemiplegia, with deviation of the eyes to the left, and aphasia. Lancet i:480–481

    Google Scholar 

  • Brouwer B, Ashby P (1991) Altered corticospinal projections to lower limb motoneurons in subjects with cerebral palsy. Brain 114:1395–1407

    Article  PubMed  Google Scholar 

  • Cheney PD, Fetz EE (1980) Functional classes of primate corticomotoneuronal cells and their relation to active force. J Neurophysiol 44:773–791

    PubMed  CAS  Google Scholar 

  • Chokroverty S, Reyes MG, Rubino FA, Barron KD (1976) Hemiplegic amyotrophy: muscle and motor point biopsy study. Arch Neurol 33:104–110

    PubMed  CAS  Google Scholar 

  • Colebatch JG, Gandevia SC (1989) The distribution of muscular weakness in upper motor neuron lesions affecing the arm. Brain 112:749–763

    Article  PubMed  Google Scholar 

  • Colebatch JG, Gandevia SC, Spira PJ (1986) Voluntary muscle strength in hemiparesis: distribution of weakness at the elbow. J Neurol Neurosurg Psychiatry 49:1019–1024

    Article  PubMed  CAS  Google Scholar 

  • Colebatch JG, Rothwell JC, Day BL, Thompson PD, Marsden CD (1990) Cortical outflow to proximal arm muscles in man. Brain 113:1843–1856

    Article  PubMed  Google Scholar 

  • Edman KAP, Elzingea G, Noble MIM (1978) Enhancement of mechanical performance by stretch during lengthening contractions of the veterbrate skeletal muscle fibres. J Physiol (Lond) 281:139–155

    CAS  Google Scholar 

  • Edstrom L (1970) Selective changes in the sizes of red and white muscle fibres in upper motor neurone lesions and parkinsonism. J Neurol Sci 11:537–550

    Article  PubMed  CAS  Google Scholar 

  • Evarts E (1968) Relation of pyramidal tract activity to force exerted during voluntary movement. J Neurophysiol 31:14–27

    PubMed  CAS  Google Scholar 

  • Fetz EE, Cheney PD (1980) Postspike facilitation of forelimb muscle activity by primate corticomotoneuronal cells. J Neurophysiol 44:751–772

    PubMed  CAS  Google Scholar 

  • Gandevia SC, Plassman BL (1988) Responses in human intercostal and truncal muscles to motor cortical and spinal stimulation. Respir Physiol 73:325–338

    Article  PubMed  CAS  Google Scholar 

  • Gandevia SC, Rothwell JC (1987) Activation of the human diaphragm from the motor cortex. J Physiol (Lond) 384:109–118

    CAS  Google Scholar 

  • Georgeopoulos AP, Kettner RE, Schwartz AB (1988) Primate motor cortex and free arm movements to visual targets in three-dimensional space. II. Coding of the direction of movement by a neuronal population. J Neurosci 8:2928–2937

    Google Scholar 

  • Gowers WR (1887) Lectures on the diagnosis of diseases of the brain, 2nd edn. Churchill, London, pp 54–55

    Google Scholar 

  • Gowers WR (1893) A manual of diseases of the nervous system, 2nd edn. Churchill, London (Hafner Reprint, Darien, 1974)

    Google Scholar 

  • Heffner R, Masterton RB (1983) The role of the corticospinal tract in the evolution of human digital dexterity. Brain Behav Evol 23:165–183

    Article  PubMed  CAS  Google Scholar 

  • Hughlings Jackson J (1931) Selected writings of John Hughlings Jackson, vol 1. (Ed: J Taylor) Hodder and Stoughton, London

    Google Scholar 

  • Ismail HM, Ranatunga KW (1981) Isometric contractions of normal and spastic human skeletal muscle. Muscle Nerve 4:214–218

    Article  PubMed  CAS  Google Scholar 

  • Iwatsubo T, Kuzuhara S, Kanemitsu A, Shimada H, Toyokura Y (1990) Corticofugal projections to the motor nuclei of the brainstem and spinal cord in humans. Neurology 40:309–312

    PubMed  CAS  Google Scholar 

  • Jackson JH (1865) Lectures on hemiplegia. Clinical lectures and reports by the medical and surgical staff of the London Hospital 2:297–332

    Google Scholar 

  • Jones RD, Donaldson IM, Parkin PJ (1989) Impairment and recovery of ipsilateral sensory-motor function following unilateral cerebral infarction. Brain 112:113–132

    Article  PubMed  Google Scholar 

  • Joyce GC, Rack PMH, Westbury DR (1967) The mechanical properties of cat soleus muscle during controlled lengthening and shortening movements. J Physiol (Lond) 204:461–474

    Google Scholar 

  • Katz B (1939) The relation between force and speed in muscular contraction. J Physiol (Lond) 96:45–64

    CAS  Google Scholar 

  • Kuypers HGJM (1987) Some aspects of the organization of the output of the motor cortex. In: Bock G, O’Connor M, Marsh J (eds) Motor areas of the cerebral cortex. Wiley, Chichester, pp 63–82 (Ciba Foundation Symposium 132)

    Google Scholar 

  • Lance JW, McLeod JG (1981) A physiological approach to clinical neurology, 3rd edn. Butter-worths London

    Google Scholar 

  • Landin S, Hagenfeldt L, Saltin B, Wahren J (1977) Muscle metabolism during exercise in hemiparetic patients. Clin Sci Mol Med 53:257–269

    PubMed  CAS  Google Scholar 

  • Landgren S, Phillips CG, Porter R (1962) Minimal synaptic actions of pyramidal impulses on some alpha motoneurones of a baboon hand and forearm. J Physiol (Lond) 161:91–111

    CAS  Google Scholar 

  • Lawrence DG, Porter R, Redman J (1985) Corticomotoneuronal synapses in the monkey: light microscopic localisation of motoneurons of intrinsic muscles of the hand. J Comp Neurol 232:499–510

    Article  PubMed  CAS  Google Scholar 

  • Lemon RN (1990) Mapping the output functions of the motor cortex. In: Edelman G, Gall E, Cowan WM (eds) Signal and Sense: local and global order in perceptual maps. Wiley, Chichester, pp 315–356

    Google Scholar 

  • Lemon RN, Mantel GWH (1989) The influence of changes in discharge frequency of corticospinal neurones of hand muscles in the monkey. J Physiol (Lond) 413:351–378

    CAS  Google Scholar 

  • Lemon RN, Werner W, Bennett KMB, Flament DA (1992) The proportion of slow and fast pyramidal tract neurones producing post-spike facilitation of hand muscles in the conscious monkey. Proc Physiol Soc July: C43

    Google Scholar 

  • Lewis R, Brindley GS (1965) The extrapyramidal cortical motor map. Brain 88:387–407

    Article  Google Scholar 

  • Liu CN, Chambers, WW (1964) An experimental study of the cortico-spinal system in the monkey (Macaca mulatto). The spinal pathways and preterminal distribution of degenerating fibers following discrete lesions of the pre-and postcentral gyri and bulbar pyramid. J Comp Neurol 123:257–284

    Article  PubMed  CAS  Google Scholar 

  • Mann L (1895) Über den Lähmungstypus bei der cerebralen Hemiplegie. Sammlung klinischer Vorträge, Leipzig, pp 355–368 (Innere Medizin, no 132; new series, 39)

    Google Scholar 

  • Mantel GWH, Lemon RN (1987) Cross-correlation reveals facilitation of single motor units in thenar muscles by single corticospinal neurones in the conscious monkey. Neurosci Lett 77:113–118

    Article  PubMed  CAS  Google Scholar 

  • Miller RG, Green AT, Moussavi RS, Carson PJ, Weiner MW (1990) Excessive muscular fatigue in patients with spastic paraparesis. Neurology 40:1271–1274

    PubMed  CAS  Google Scholar 

  • Nathan PW, Smith MC (1955) Long descending tracts in man. I. Review of present knowledge. Brain 78:248–303

    Article  PubMed  CAS  Google Scholar 

  • Nathan PW, Smith MC (1982) The rubrospinal and central tegmental tracts in man. Brain 105:223–269

    Article  PubMed  CAS  Google Scholar 

  • Nudo RJ, Masterton RB (1990) Descending pathways to the spinal cord, IV: some factors related to the amount of cortex devoted to the cortiospinal tract. J Comp Neurol 296:584–597

    Article  PubMed  CAS  Google Scholar 

  • Palmer E, Ashby P (1992) Corticospinal projections to upper limb motoneurones in humans. J Physiol (Lond) 448:397–412

    CAS  Google Scholar 

  • Phillips CG, Porter R (1964) The pyramidal projection to motoneurones of some muscle groups of the baboon’s forelimb. Prog Brain Res 12:222–245

    Article  PubMed  CAS  Google Scholar 

  • Phillips CG, Porter R (1977) Corticospinal neurones: their role in movement. Academic, London

    Google Scholar 

  • Shinoda Y, Yokota JI, Futami T (1981) Divergent projection of individual corticospinal axons to motoneurons of multiple muscles in the monkey. Neurosci Lett 23:7–12

    Article  PubMed  CAS  Google Scholar 

  • Smith AM, Hepp-Reymond M-C, Wyss UR (1975) Relation of activity in precentral cortical neurons to force and rate of force change during isometric contractions of the finger muscles. Exp Brain Res 23:315–332

    Article  PubMed  CAS  Google Scholar 

  • Tanji J, Okano K, Sato KC (1988) Neruonal activity in cortical motor areas related to ipsilateral, contralateral, and bilateral digit movements of the monkey. J Neurophysiol 60:325–343

    PubMed  CAS  Google Scholar 

  • Warabi T, Inoue K, Nöda H, Murakami S (1990) Recovery of voluntary movement in hemiplegic patients. Correlation with degenerative shrinkage of the cerebral peduncles in CT images. Brain 113:177–189

    Article  PubMed  Google Scholar 

  • Weiller C, Chollet F, Friston KJ, Wise RJS, Frackowiak RSJ (1992) Functional reorganization of the brain in recovery from striatocapsular infarction in man. Ann Neurol 31:463–472

    Article  PubMed  CAS  Google Scholar 

  • Wernicke C (1989) Zur Kenntniss der cerebralen Hemiplegie. Berl Klin Wochenschr 1889; 26:969–970

    Google Scholar 

  • Young JL, Mayer RF (1982) Physiological alterations of motor units in hemiplegia. J Neurol Sci 54:401–412

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gandevia, S.C. (1993). Strength Changes in Hemiparesis: Measurements and Mechanisms. In: Thilmann, A.F., Burke, D.J., Rymer, W.Z. (eds) Spasticity. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78367-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78367-8_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78369-2

  • Online ISBN: 978-3-642-78367-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics