Interphase Cytogenetics of Childhood Acute Lymphoblastic Leukemia with Fluorescence In Situ Hybridization Using a Panel of Eight Chromosome-Specific DNA Probes

  • A. Berger
  • S. Strehl
  • P. F. Ambros
  • O. A. Haas
  • H. Gadner
Conference paper
Part of the Haematology and Blood Transfusion / Hämatologie und Bluttransfusion book series (HAEMATOLOGY, volume 36)

Abstract

Fluorescence in situ hybridization (FISH) analysis, as introduced by Cremer et al. [1], is a useful technique for detecting numerical as well as certain structural chromosome aberrations in interphase nuclei [2,3]. Numerical chromosome anomalies are determined by enumerating the hybridization signals of specific repetitive α-satellite DNA probes. Thus, FISH which is also referred to as “interphase cytogenetics” extends the possibilities to evaluate numerical anomalies particularly in neoplasms, for example acute lymphoblastic leukemias (ALL), in which conventional cytogenetic analysis is hampered by a small number of metaphases and poor chromosome quality.

Keywords

Formaldehyde Leukemia Citrate Iodide Dextran 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Cremer T, Landegent J, Bruckner A, Scholl H, Schardin M, Hager H, Devilee P, Pearson P, Van der Ploeg M (1986) Detection of chromosome aberrations in the human interphase nucleus by visualization of specific target DNAs. Hum Genet 74: 346–352PubMedCrossRefGoogle Scholar
  2. 2.
    Anastasi J (1991) Interphase cytogenetic analysis in the diagnosis and study of neoplastic disorders. Am J Clin Pathol 95: 22–28Google Scholar
  3. 3.
    Poddighe PJ, Moesker O, Smeets D, Awwad BH, Ramaekers FCS, Hopman AHN (1991) Interphase cytogenetics of hematological cancer: Comparison of classical karyotyping and in situ hybridization using a panel of eleven chromosome specific DNA probes. Cancer Res 51: 1959–1967PubMedGoogle Scholar
  4. 4.
    Cooke HJ, Hindley J (1979) Cloning of human satellite III DNA: Different components are on different chromosomes. Nucleic Acid Res 6: 3177–3197PubMedCrossRefGoogle Scholar
  5. 5.
    Devilee P, Kievits T, Waye JS, Pearson PL, Willard HF (1988) Chromosome-specific alpha satellite DNA: Isolation and mapping of a polymorphic alphoid repeat from human chromosome 10. Genomics 3: 1–7PubMedCrossRefGoogle Scholar
  6. 6.
    Devilee P, Cremer T, Siagboom P, Bakker E, Sholl HP, Hager HD, Stevenson AFG, Cornelisse CJ, Pearson PL (1986) Two subsets of human alphoid repetitive DNA show distinct preferential localization in the pericentric regions of chromosomes 13.18 and 21. Cytogenet Cell Genet 41: 193–201CrossRefGoogle Scholar
  7. 7.
    Wolfe J, Darling SM, Erickson RP, Craig IW, Buckle VJ, Rigby PWJ, Willard HF, Goodfellow PN (1985) Isolation and characterization of an alphoid centromeric repeat family from the human Y chromosome. J Mol Biol 182: 477–485PubMedCrossRefGoogle Scholar
  8. 8.
    Haas OA, Schwarzmeier JD, Nacheva E, Fischer P, Paietta E (1984) Investigations on karyotype evolution in patients with chronic myeloid leukemia (CML). Blut 48: 33PubMedCrossRefGoogle Scholar
  9. 9.
    Ambros PF, Karlic HI (1987) Chromosomal insertion of papillomavirus 18 sequences in HeLa cells detected by non-isotopic in situ hybridization and reflection contrast microscopy. Hum Genet 77: 251–254PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1994

Authors and Affiliations

  • A. Berger
    • 1
  • S. Strehl
    • 1
  • P. F. Ambros
    • 1
  • O. A. Haas
    • 1
  • H. Gadner
    • 1
  1. 1.CCRISt.Anna Children’s HospitalViennaAustria

Personalised recommendations