Skip to main content

Graft Rejection After Allogeneic Bone Marrow Transplantation: The Impact of T Cells, Graft-Versus-Host Reaction and Marrow Cell Number

  • Conference paper
Acute Leukemias IV

Abstract

Donor-derived T cells are responsible for graft-versus-host disease after allogeneic bone marrow transplantation1. Animal studies have demonstrated that when they are eliminated, successful transplantation is possible even across major histocompatibility barriers [2,3]. Clinical data confirmed this finding [4], but unfortunately revealed that the risk of graft rejection is markedly increased after transplantation of T cell-depleted grafts [5–7]. Therefore, it was suggested that T lymphocytes are in some way important for successful stem-cell engraftment [8]. Donor T cells, it was hypothesized, could provide additional immunosuppressive activity by acting against alloreactive host lymphocytes, thereby preventing graft rejection [9,10]. Alternatively, lymphocyte-derived growth factors could be essential for lasting engraftment [11,12].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Korngold R, Sprent J (1982) Features of T cells causing G-2-restricted lethal graft-versus host disease across minor histocompatibility barriers. J Exp Med 155: 872–883

    Article  PubMed  CAS  Google Scholar 

  2. Müller-Ruchholtz W, Wottge H-U, MüllerHermelink HK (1976) Bone marrow transplan-tation in rats across strong histocompatibility barriers by selective elimination oflymphoid cells in donor marrow. Transplant Proc 8: 537–541

    PubMed  Google Scholar 

  3. Vallera DA, Soderling CCB, Carlson GJ, Kersey JH (1981) Bone marrow transplantation across major histocompatibility barriers in mice. Effect of elimination of T cells from donor grafts by treatment with monoclonal Thy-1.2 plus complement or antibody alone. Transplantation 31: 218–222

    Article  PubMed  CAS  Google Scholar 

  4. Trigg ME, Billing R, Sondel PM et al. (1985) Clinical trial depleting T lymphocytes from donor marrow for matched and mismatched allogeneic bone marrow transplants. Cancer Treat Rep 69: 377 ff

    PubMed  CAS  Google Scholar 

  5. Maranichi D, Gluckman E, Blaise D et al. (1987) Impact of T-cell depletion on outcome of allogeneic bone-marrow transplantation for standard-risk leukemias. Lancet 68: 175–178

    Article  Google Scholar 

  6. Martin PJ, Hansen JA, Buckner CD et al. (1985) Effects of in vitro depletion of T cells in HLA-identical allogeneic marrow grafts. Blood 66: 664–672

    PubMed  CAS  Google Scholar 

  7. Mitsuyasu RT, Champlin RE, Gale RP et al. (1986) Treatment of donor bone marrow with monoclonal anti-T-cell antibody and complement for the prevention of graft-versus-host disease. A prospective, randomized, double blind trial. Ann Intern Med 105: 20–26

    PubMed  CAS  Google Scholar 

  8. Vallera DA, Soderling CC, Carlson GJ, Kersey JH (1982) Bone marrow transplantation across major histocompatibility barriers in mice. II. T cell requirement for engraftment in total lymphoid irradiation conditioned recipients. Transplantation 33: 243

    Article  PubMed  CAS  Google Scholar 

  9. Vriesendorp HM (1985) Engraftment of hemopoietic cells In: van Bekkum DW, Lowenberg B (eds) Bone marrow transplantation. Biological mechanisms and clinical practice. New York: Marcel Dekker, pp 73–146

    Google Scholar 

  10. Gale RP, Reisner Y (1986) Grat rejection and graft-versus-host disease: mirror images. Lancet 1: 1468–1470

    Article  PubMed  CAS  Google Scholar 

  11. Bacon ER, Sing AP, Reinish CL (1983) Amplification of granulopoiesis by T cell sub populations. Exp Hematol 11: 747–756

    PubMed  CAS  Google Scholar 

  12. Pierce GE (1990) Allogeneic versus semiallogeneic F, bone marrow transplantation into sublethally irradiated MHC-disparate hosts: Effects on mixed lymphoid chimerism, skin graft tolerance. host survival. and alloreactivity. Transplantation 49: 138–144

    Article  PubMed  CAS  Google Scholar 

  13. Uharek L, Gassmann W, Glass B, Steinmann J, Loeffler H, Mueller-Ruchholtz W (1993) Influence of cell dose and graft-versljs-host reactivity on rejection rates after allogeneic bone marrow transplantation. Blood 79 (in press)

    Google Scholar 

  14. Metcalf D (1968) Potentiation of bone marrow colony growth in vitro by the addition of lymphoid or bone marrow cells. J Cell Physical 72: 9

    Article  CAS  Google Scholar 

  15. Navarro J, Touraine J-L (1989) Promotion offetal liver engraftment by T cells in a murine semiallogeneic model without graft-versus-host reaction. Transplantation 47: 871–876

    Article  PubMed  CAS  Google Scholar 

  16. van Bekkum DW (1974) The double barrier in bone marrow transplantation. Sem Hematol 11: 325–340

    Google Scholar 

  17. Vallera DA, Soderling CC, Kersey JH (1982) Bone marrow transplantation across major histocompatability barriers in mice. III. Treatment of donor grafts with monoclonal antibodies directed against Lyt determinants. J Immunol 128: 871–875

    PubMed  CAS  Google Scholar 

  18. Soderling C, Song CW, Blazar BR, Vallera DA (1985) A correlation between conditioning and engraftment in recipients of MHC-mismatched T-cell depleted murine bone marrow transplants. J Immunol 135: 941–946

    PubMed  CAS  Google Scholar 

  19. Atkinson K, Norrie S, Chan P, Downs K, Biggs J (1985) Lack of correlation between nucleated bone marrow cell dose, marrow CFU-GM dose or marrow CFU-E dose and the rate of HLA-identical sibling engraftment. Br J Haematol 60: 245–251

    Article  PubMed  CAS  Google Scholar 

  20. Waldman H, Hale G, Cividalli G et al. (1984) Elimination of graft-versus-host disease by in vitro depletion of alloreactive lymphocytes with a monoclonal rat anti-human lymphocyte antibody (Campath-l). Lancet 2: 483–486

    Article  Google Scholar 

  21. Reisner Y, Kapoor NJ, Kirkpatrick D et al. (1981) Transplantation for acute leukemia with HLA-A and B nonidentical parental marrow cells fractionated with soybean agglutinin and sheep red blood cells. Lancet 2: 327–331

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Uharek, L. et al. (1994). Graft Rejection After Allogeneic Bone Marrow Transplantation: The Impact of T Cells, Graft-Versus-Host Reaction and Marrow Cell Number. In: Büchner, T., Hiddemann, W., Wörmann, B., Schellong, G., Ritter, J. (eds) Acute Leukemias IV. Haematology and Blood Transfusion / Hämatologie und Bluttransfusion, vol 36. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78350-0_124

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78350-0_124

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78352-4

  • Online ISBN: 978-3-642-78350-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics