Skip to main content

G-Protein Subunit Lipidation in Membrane Association and Signaling

  • Chapter
GTPases in Biology II

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 108 / 2))

Abstract

The heterotrimeric GTP-binding proteins (G-proteins), comprised of α, β, and γ subunits, are localized to the inner surface of the plasma membrane where they serve as receptor-mediated signal transducers. It is the α subunit, which exists as many different subtypes, that confers identity to the oligomer and in most systems governs the specificity of the interaction with receptor and effector. The βγ subunits, of which multiple forms also exist, appear to function as a complex, and individual forms may be shared among the multiple α subunits (Roof et al. 1985; Fung 1983; Robishaw et al. 1989; Schmidt and Neer 1991; Tamir et al. 1991). A model for G-protein signal transduction is described in Fig. 1. Receptor-mediated activation of the G-protein results in the exchange of GTP for GDP on the α subunit, promoting its separation from βγ. Subsequent interaction with a membrane-associated effector protein in turn generates an intracellular response. The model depicted in Fig. 1 shows the α subunit interacting with the effector protein, as most available evidence points to the GTP-bound form of the α subunit as activating effectors such as adenylyl cyclase, retinal phosphodiesterase, and a phosphoinositide-specific phospholipase C (Northup et al. 1983; Katada et al. 1984; Cerione et al. 1988; Robishaw et al. 1986; Smrcka et al. 1991). However, recent evidence has indicated that the βγ complex may play a more direct role in G-protein-linked signal transduction than previously thought (Gilman 1987; Kim et al. 1989; Tang and Gilman 1991; Whiteway et al. 1989). This has been most clearly demonstrated in the mating factor signaling pathway in yeast (Whiteway et al. 1989, and references therein).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ashby MN, King DS, Rine J (1992) Endoproteolytic processing of a farnesylated peptide in vitro. Proc Natl Acad Sci USA 89:4613–4617.

    Article  PubMed  CAS  Google Scholar 

  • Audigier Y, Journot L, Pantaloni C, Bockaert J (1990) The carboxy-terminal domain of G necessary for anchorage of the activated form in the plasma membrane. J Cell Biol 111:1427–1435.

    Article  PubMed  CAS  Google Scholar 

  • Bourne HR, Sanders DA, McCormick F (1991) The GTPase superfamily: conserved structure and molecular mechanism. Nature 349:117–127.

    Article  PubMed  CAS  Google Scholar 

  • Buss JE, Mumby SM, Casey PJ, Gilman AG, Sefton BM (1987) Myristoylated α subunits of guanine nucleotide-binding regulatory proteins. Proc Natl Acad Sci USA 84:7493–7497.

    Article  PubMed  CAS  Google Scholar 

  • Casey PJ, Thissen JA, Moomaw JF (1991) Enzymatic modification of proteins with a geranylgeranyl isoprenoid. Proc Natl Acad Sci USA 88:8631–8635.

    Article  PubMed  CAS  Google Scholar 

  • Cerione RA, Kroll S, Rajaram R, Uson C, Goldsmith P, Spiegel AM (1988) An antibody directed against the carboxy-terminal decapeptide of the α subunit of the retinal GTP-binding protein, transducin. Effects on transducin function. J Biol Chem 263:9345–9352.

    PubMed  CAS  Google Scholar 

  • Clarke S, Vogel JP, Deschenes RJ, Stock J (1988) Posttranslational modification of the Ha-ras oncogene protein:evidence for a third class of protein carboxyl methyltransferases. Proc Natl Acad Sci USA 85:4643–4647.

    Article  PubMed  CAS  Google Scholar 

  • Fong HK, Yoshimoto KK, Eversole-Cire P, Simon MI (1988) Identification of a GTP-binding protein α subunit that lacks an apparent ADP-ribosylation site for pertussis toxin. Proc Natl Acad Sci USA 85:3066–3070.

    Article  PubMed  CAS  Google Scholar 

  • Fukada Y, Ohguro H, Saito T, Yoshizawa T, Akino T (1989) βγ subunit of bovine transducin composed of two components with distinctive γ subunits. J Biol Chem 264:5937–5943.

    PubMed  CAS  Google Scholar 

  • Fukada Y, Takao T, Ohguro H, Yoshizawa T, Akino T, Shimonishi ? (1990) Farnesylated γ subunit of photoreceptor G protein indispensable for GTP-binding. Nature 346:658–660.

    Article  PubMed  CAS  Google Scholar 

  • Fung BK-K (1983) Characterization of transduction from bovine retinal rod outer segments. I. Separation and reconsititution of subunits. J Biol Chem 258:10495–10502.

    PubMed  CAS  Google Scholar 

  • Fung BK-K, Hurley JB, Stryer L (1981) Flow of information in the light-triggered cyclic nucleotide cascade of vision. Proc Natl Acad Sci USA 78:152–156.

    Article  PubMed  CAS  Google Scholar 

  • Gautam N, Baetsher M, Aebersold R, Simon MI (1989) A G protein γ subunit shares homology with ras proteins. Science 245:971–974.

    Article  Google Scholar 

  • Gilman AG (1987) G proteins: transducers of receptor-generated signals. Ann Rev Biochem 56:615–649.

    Article  PubMed  CAS  Google Scholar 

  • Glomset J, Gelb M, Farnsworth C (1991) The prenylation of proteins. Curr Opinion Lipidology 2:118–124.

    Article  CAS  Google Scholar 

  • Glomset JA, Gelb MH, Farnsworth CC (1990) Prenyl proteins in eukaryotic cells: a new type of membrane anchor. Trends Biochem Sci 15:139–142.

    Article  PubMed  CAS  Google Scholar 

  • Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425–434.

    Article  PubMed  CAS  Google Scholar 

  • Gordon JI (1990) Protein N-myristoylation: simple questions, unexpected answers. Clin Res 38:517–528.

    PubMed  CAS  Google Scholar 

  • Gordon JI, Duronio RJ, Rudnick DA, Adams SP, Goke GW (1991) Protein N-myristoylation. J Biol Chem 266:8647–8650.

    PubMed  CAS  Google Scholar 

  • Gutierrez L, Magee AI, Marshall CJ, Hancock JF (1989) Post-translational processing of p21ras is two-step and involves carboxyl-methylation and carboxy-terminal proteolysis. EMBO J 8:1093–1098.

    PubMed  CAS  Google Scholar 

  • Hancock JF, Cadwallader K, Marshall CJ (1991) Methylation and proteolysis are essential for efficient membrane binding of prenylated p21K-ras(B). EMBO J 10:641–646.

    PubMed  CAS  Google Scholar 

  • Hrycyna CA, Sapperstein SK, Clarke S, Michaelis S (1991) The Saccharomyces cerevisiae STE14 gene encodes a methyltransferase that mediates C-terminal methylation of a-factor and ras proteins. EMBO J 10:1699–1709.

    PubMed  CAS  Google Scholar 

  • Hrycyna CH, Clarke S (1992) Maturation of isoprenylated proteins in Saccharomyces cerevisiae:multiple activities catalyze the cleavage of the three carboxyl-terminal amino acids from farnesylated substrates in vitro. J Biol Chem 267:10457–10464.

    PubMed  CAS  Google Scholar 

  • Hurley JB, Fong HKW, Teplow DB, Dreyer WI, Simon MI (1984) Isolation and characterization of a cDNA clone for the γ subunit of bovine retinal transducin. Proc Natl Acad Sci USA 81:6948–6952.

    Article  PubMed  CAS  Google Scholar 

  • James G, Olson EN (1990) Fatty acylated proteins as components of intracellular signaling pathways. Biochemistry 29:2623–2634.

    Article  PubMed  CAS  Google Scholar 

  • Jones DT, Reed RR (1987) Molecular cloning of five GTP-binding protein cDNA species from rat olfactory neuroepithelium. J Biol Chem 262:14241–14249.

    PubMed  CAS  Google Scholar 

  • Jones DT, Reed RR (1989) Golf, an olfactor neuron specific G protein involved in odorant signal transduction. Science 244:790–795.

    Article  PubMed  CAS  Google Scholar 

  • Jones TLZ, Simonds WF, Merendino JJ, Brann MR, Spiegel AM (1990) Myristoylation of an inhibitory GTP-binding protein α subunit is essential for its membrane attachment. Proc Natl Acad Sci 87:568–572.

    Article  PubMed  CAS  Google Scholar 

  • Jones TLZ, Spiegel AM (1990) Isoprenylation of an inhibitory G protein α subunit occurs only upon mutagenesis of the carboxyl terminus. J Biol Chem 265:19389–19392.

    PubMed  CAS  Google Scholar 

  • Katada T, Northup JK, Bokoch GM, Ui M, Gilman AG (1984) The inhibitory guanine nucleotide-binding regulatory component of adenylate cyclase. Subunit dissociation and guanine nucleotide-dependent hormonal inhibition. J Biol Chem 259:3578–3585.

    PubMed  CAS  Google Scholar 

  • Kim D, Lewis DL, Graziadei L, Neer EJ, Bar-Sagi D, Clapham DE (1989) G-protein βγ subunits activate the cardiac muscarinic K+-channel via phospholipase A2. Nature 337:557–560.

    Article  PubMed  CAS  Google Scholar 

  • Kuhn H (1980) Light-and GTP-regulated interaction of GTPase and other proteins with bovine photoreceptor membranes. Nature 283:587–589.

    Article  PubMed  CAS  Google Scholar 

  • Lai RK, Perez-Sala D, Canada FJ, Rando RR (1990) The γ subunit of transducin is farnesylated. Proc Natl Acad Sci USA 87:7673–7677.

    Article  PubMed  CAS  Google Scholar 

  • Linder ME, Pang I-H, Duronio RJ, Gordon JI, Sternweis PC, Gilman AG (1991) Lipid modifications of G protein subunits: myristoylation of G increases its affinity for βγ. J Biol Chem 266:4654–4659.

    PubMed  CAS  Google Scholar 

  • Lochrie MA, Hurley JB, Simon MI (1985) Sequence of the α subunit of photo-receptor G protein: homologies between transducin, ras and elongation factor. Science 228:96–99.

    Article  PubMed  CAS  Google Scholar 

  • Maltese WA, Robishaw JD (1990) Isoprenylation of C-terminal cysteine in a G-protein γ subunit. J Biol Chem 265:18071–18074.

    PubMed  CAS  Google Scholar 

  • Mumby SM, Casey PJ, Gilman AG, Gutowski S, Sternweis PC (1990) G protein γ subunits contain a 20-carbon isoprenoid. Proc Natl Acad Sci USA 87:5873–5877.

    Article  PubMed  CAS  Google Scholar 

  • Mumby SM, Heukeroth RO, Gordon JI, Gilman AG (1990) G protein α subunit expression, myristoylation, and membrane association in COS cells. Proc Natl Acad Sci USA 87:728–732.

    Article  PubMed  CAS  Google Scholar 

  • Muntz KH, Sternweis PC, Gilman AG, Mumby SM (1992) Influence of γ subunit prenylation on association of guanine nucleotide-binding regulatory proteins with membranes. Mol Biol of the Cell 3:49–61.

    CAS  Google Scholar 

  • Navon SE, Fung BK-K (1987) Characterization of transducin from bovine retinal rod outer segment. Participation of the amino terminal region of Tα in subunit interactions. J Biol Chem 262:15746–15751.

    PubMed  CAS  Google Scholar 

  • Neer EJ, Pulsifer L, Wolf LG (1988) The amino terminus of G protein α subunits is required for interaction with βγ. J Biol Chem 263:8996–9000.

    PubMed  CAS  Google Scholar 

  • Northup JK, Smigel MD, Sternweis PC, Gilman AG (1983) The subunits of the stimulatory regulatory component of adenylate cyclase. Resolution of the activated 45,000-dalton (α) subunit. J Biol Chem 258:11369–11376.

    PubMed  CAS  Google Scholar 

  • Ohguro H, Fukada Y, Takao T, Shimonishi Y, Yoshizawa T, Akino T (1991) Carboxyl methylation and farnesylation of transducin gamma subunit synergistically enhance its coupling with meterhodopsin II. EMBO 10:3669–3674.

    CAS  Google Scholar 

  • Reiss Y, Goldstein JL, Seabra MC, Casey PJ, Brown MS (1990) Inhibition of purified p21ras farnesyl:protein transferase by Cys-AAX tetrapeptides. Cell 62:81–88.

    Article  PubMed  CAS  Google Scholar 

  • Reiss Y, Stradley SJ, Gierasch LM, Brown MS, Goldstein JL (1991) Sequence requirements for peptide recognition by rat brain p21ras farnesyl:protein transferase. Proc Natl Acad Sci USA 88:732–736.

    Article  PubMed  CAS  Google Scholar 

  • Robishaw JD, Kaiman VK, Moomaw CR, Slaughter CA (1989) Existence of two γ subunits of the G proteins in brain. J Biol Chem 264:15758–15761.

    PubMed  CAS  Google Scholar 

  • Robishaw JD, Smigel MD, Gilman AG (1986) Molecular basis for two forms of the G protein that stimulates adenylate cyclase. J Biol Chem 261:9587–9590.

    PubMed  CAS  Google Scholar 

  • Roof DJ, Applebury ML, Sternweis PC (1985) Relationships within the family of GTP-binding proteins isolated from bovine central nervous system. J Biol Chem 260:16242–16249.

    PubMed  CAS  Google Scholar 

  • Ross EM, Howlett AC, Ferguson KM, Gilman AG (1978) Reconstitution of hormone-sensitive adenylate cyclase acitvity with resolved components of the enzyme. J Biol Chem 253:6401–6412.

    PubMed  CAS  Google Scholar 

  • Rudnick DA, McWherter CA, Adams SP, Ropson IJ, Duronio RJ, Gordon JI (1990) Structural and functional studies of Saccharomyces cervisiae myristoyl-CoA: protein N-myristoyltransferase produced in Escherichia coli. J Biol Chem 265:13370–13378.

    PubMed  CAS  Google Scholar 

  • Schmidt CJ, Neer EJ (1991) In vitro synthesis of G protein βγ dimers. J Biol Chem 266:4538–4544.

    PubMed  CAS  Google Scholar 

  • Simonds WF, Butrynski JE, Gautam N, Unson CG, Spiegel AM (1991) G protein βγ dimers: Membrane targeting requires subunit coexpression and an intact γ CAAX domain. J Biol Chem 266:5363–5366.

    PubMed  CAS  Google Scholar 

  • Smrcka AV, Hepler JR, Brown KO, Sternweis PC (1991) Regulation of poly-phosphoinositide-specific phospholipase C activity by purified Gq. Science 251:804–807.

    Article  PubMed  CAS  Google Scholar 

  • Spiegel AM, Backlund PS, Butyrinski JE, Jones TLZ, Simonds WF (1991) The G protein connection: molecular basis of membrane association. Trends Biochem Sci 16:338–341.

    Article  PubMed  CAS  Google Scholar 

  • Stephenson RC, Clarke S (1990) Identification of a C-terminal protein carboxyl methyltransferase in rat liver membranes utilizing a synthetic farnesyl cysteine-containing peptide substrate. J Biol Chem 265:16248–16254.

    PubMed  CAS  Google Scholar 

  • Sternweis PC (1986) The purified α subunits of Go and Gi from bovine brain require βγ for association with phospholipid vesicles. J Biol Chem 261:631–637.

    PubMed  CAS  Google Scholar 

  • Tamir H, Fawzi AB, Tamir A, Evans T, Northup JK (1991) G-protein βγ forms: identity of β and diversity of γ subunits. Biochemistry 30:3929–3936.

    Article  PubMed  CAS  Google Scholar 

  • Tang W-J, Gilman AG (1991) Type-specific regulation of adenylyl cyclase by G protein βγ subunits. Science 254:1500–1503.

    Article  PubMed  CAS  Google Scholar 

  • Towler DA, Gordon JI, Adams SP, Glaser L (1988) The biology and enzymology of eukaryotic protein acylation. Ann Rev Biochem 57:69–99.

    Article  PubMed  CAS  Google Scholar 

  • VanMeurs KP, Angus CW, Lavu S, Kung H, Czarnecki SK, Moss J, Vaughan M (1987) Deduced amino acid sequence of bovine brain retinal G: similarities to other guanine nucleotide-binding proteins. Proc Natl Acad Sci USA 84:3107–3111.

    Article  CAS  Google Scholar 

  • Volker C, Lane P, Kwee C, Johnson M, Stock J (1991) A single activity carboxyl methylates both farnesyl and geranylgeranyl cysteine residues. FEBS Lett 295: 189–194.

    Article  PubMed  CAS  Google Scholar 

  • Volker C, Miller RA, McCleary WR, Rao A, Poenie M, Backer JM, Stock JB (1991) Effects of farnesylcysteine analogs on protein carboxyl methylation and signal transduction. J Biol Chem 266:21515–21522.

    PubMed  CAS  Google Scholar 

  • Whiteway M, Hougan L, Dignard D, Thomas DY, Bell L, Saari GC, Grant FJ, O’Hara P, MacKay VL (1989) The STE4 and STE18 genes of yeast encode potential β and γ subunits of the mating factor receptor-coupled G protein. Cell 56:467–477.

    Article  PubMed  CAS  Google Scholar 

  • Wilcox C, Hu J-S, Olson EN (1987) Acylation of proteins with myristic acid occurs cotranslationally. Science 238:1275–1278.

    Article  PubMed  CAS  Google Scholar 

  • Yamane HK, Farnsworth CC, Xie H, Howald W, Fung BK-K, Clarke S, Gelb MH, Glomset JA (1990) Brain G protein y subunits contain an all-trans-geranylgeranyl-cysteine methyl ester at their carboxyl termini. Proc Natl Acad Sci USA 87:5868–5872.

    Article  PubMed  CAS  Google Scholar 

  • Yatsunami K, Pandya BV, Oprian DD, Khorana HG (1985) cDNA-derived amino acid sequence of the γ subunit of GTPase from bovine rod outer segments. Proc Natl Acad Sci USA 82:1936–1940.

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama K, Goodwin GW, Ghomashchi F, Glomset JA, Gelb MH (1991) A protein geranylgeranyltransferase from bovine brain: implications for protein prenylation specificity. Proc Natl Acad Sci USA 88:5302–5306.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thissen, J.A., Casey, P.J. (1993). G-Protein Subunit Lipidation in Membrane Association and Signaling. In: Dickey, B.F., Birnbaumer, L. (eds) GTPases in Biology II. Handbook of Experimental Pharmacology, vol 108 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78345-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78345-6_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78347-0

  • Online ISBN: 978-3-642-78345-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics