Skip to main content

Part of the book series: NATO ASI Series ((ASII,volume 8))

  • 95 Accesses

Abstract

Main components of the methane atmospheric cycle are outlined and contemporary understanding of their input in the global change is reviewed. Special attention is paid to methane atmospheric content increase influence on atmospheric composition and on the expected climate changes. The connections of the latter with methane source and sink intensities is also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Andronova NG (1991) On the role of wetlands and anthropogenic sources in the latitudinal distribution of CH. flux in the 4 atmosphere. Cin Russian) Meteorol Gidrol: 8: 36–42.

    Google Scholar 

  • Andronova NG, Schlesinger M (1991) The application of cause - and - effect analysis to mathematical models of geophysical phenomena. I. Formulation and sensitivity analysis. J Geoph Res 96: 941–946.

    Article  Google Scholar 

  • Andronova NG, Karol IL(1992 a) The role of the greenhouse effect in anthropogenic transformation of the atmospheric chemical composition. (in Russian) Atm & Oceanic Phys 28: 4: 361–369.

    Google Scholar 

  • Andronova NG, Karol IL(1992 b) (to be published) The contribution of USSR Sources to the global methane emission. Chemosphere.

    Google Scholar 

  • Bingemer HG, Crutzen PT (1987) The production of methane methane solid wastes. J Geoph Res: 92: 2181 - 2187.

    Article  Google Scholar 

  • Brenninkmeier C, Manning MR, Love DC, Wallace S, Volz-Thomas A, (1992) I nter hemispheric asymmetry in OH abundance inferred from measurements of atmospheric 14CO. Nature: 356: 6364: 0–53.

    Google Scholar 

  • Charlson RJ, Schwartz SE, Hales JM, Cess RD, Coakley JA, Hansen JA, Hoffman DJ (1992) Climate forcing by anthropogenic aerosols Science: 255: 423 - 430.

    Article  Google Scholar 

  • Cicerone RJ, Oremland RS (1988) Biogeochemical aspects of atmospheric methane. Global Biogeochemical Cycles: 2: 99 - 327.

    Article  Google Scholar 

  • CMDL (1990, 1991 ) Climate monitoring and diagnostics Laboratory Summary Rep: N 18, N 19, NOAA, ERL Boulder.

    Google Scholar 

  • Craig H (1957) Isotope standards for carbon and oxygen and correction factors for mass-spectrometric analysis of carbon dioxide. Geochem Cosmochim Acta: 12: 133–149.

    Article  Google Scholar 

  • Crutzen PJ, Aselman I, Seiler W (1986) Methane production by domestic animals, wild ruminants, other herbivorous fauna and humans. Tellus: 38B: 271–284.

    Google Scholar 

  • Crutzen P.J., Andrae M.O., 1990. Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles. Science: 250: 1669–1678.

    Google Scholar 

  • Fung I, John J, Lerner J, Matthews E, Prather M, Steele L, Fraser P (1991) Three dimensional model synthesis of the global methane cycle. J Geoph Res: 96: 13033–13065.

    Article  Google Scholar 

  • Fraser P(1991) Three dimentional model synthesis of the gobal methane slowdown cycle. J Geoph Res: 96: 13033–13065

    Article  Google Scholar 

  • GECR (1992) Global Environmental Change Report, v. IV, N 14, p. 6. Methane slowdown is greatest in the North. ODP for HCFC may be 155% too high.

    Google Scholar 

  • Hansen J, Lacis A, Prather M (1989) Greenhouse effect of chlorofluocarbons and other trace gases. J Geoph Res: 94.

    Google Scholar 

  • Henderson Sellers A (1986) Increasing cloud in a warming world. Clim Change, 9: 267–309.

    Article  Google Scholar 

  • Hogan KB, Hoffman JS, Thompson AM (1991) Methane on the greenhouse agenda. Nature, 354, N 6350: 181–182.

    Article  Google Scholar 

  • IPCC (1990): Houghton JT, Jenkins GJ, Ephraums JJ, (eds.) Climate change. The IPCC Sci. Assessment. Cambr. Univ. Press, 365 p.

    Google Scholar 

  • IPCC (1992). 1992 IPCC Supplement. Scientific Assessment of climate change, WMO, UNEP, 24 p.

    Google Scholar 

  • Jones RI, Pyle JA (1984) Observations of CH4 and N2O) by the Nimbus 7 SAMS: a comparison with in situ data and two — dimensional numerical model calculations. J Geoph Res, 89: 5263–5279.

    Article  Google Scholar 

  • Karol IL ed., (1986). Radiative and photochemical models of the atmosphere. (in Russian) Gidrometeoizdat, Leningrad, 192p.

    Google Scholar 

  • Karol IL, Kiselev AA (1989) (in Russian) Model estimation of methane and hydrogen influence on ozone with enhanced content of chlorine in he middle and upper stratosphere. Chem Phys 8, N 12: 1600–1603.

    Google Scholar 

  • Karol IL, Kiselev AA (1990) Anthropogenic effect of photochemistry and gas composition of the statosphere. (in Russian) Meteorol Hydrol, N 9: 14–19.

    Google Scholar 

  • Karol IL (1991) (in Russian) Greenhouse effect potential evaluation of hydrohalocarbon gases. Meteorol Gidrol, N 7: 57–63.

    Google Scholar 

  • Karol IL, Jagovkina SV (1992) (in Russian) The oceanic thermal inertia effects on the greenhouse warming potentials of freons. Meteorol Hidrol., N 7: 45–53.

    Google Scholar 

  • Karol IL, Kiselev AA, Frolkis VA (1992) (to be published) The key role of methane release rate in the expected ozone content and composition changes of the greenhouse atmosphere in the next century. Chemosphere.

    Google Scholar 

  • Khalil MA, Rasmussen RA (1987) Atmospheric methane trends over the last 10000 years. Atm Environm, 21, N 11: 2445–2452.

    Article  Google Scholar 

  • Khalil MAK, Rasmussen RA (1990) Constraints on the global sources of methane and an analysis of recent budgets., Tellus, 42B: 229–236.

    Article  Google Scholar 

  • Khalil MAK (1992), (ed) The Global Cycle of Methane: sources, sinks, distribution and role in global change. NATO ASI Series, Springer Verlag.

    Google Scholar 

  • Kinnison DE, Grant KE, Connell PS, Wuebbles DJC1992), Cto be published) Effects of the Mt. Pinatubo eruption of the radiative and chemical processes in the troposphere and stratosphere. Proc. of the 1992 Quadrennial ozone symposium

    Google Scholar 

  • Kvenvolden KA (1988). Methane hydrate and global climate. Glob Biogeochem Cycles, 2, N 3: 221–229.

    Article  Google Scholar 

  • Lerner J, Matthews E, Fung I (1988) Methane emissions from animals: a global high resolution database. Glob Biogeochem Cycles, 2, N 2: 139–156.

    Article  Google Scholar 

  • Matthews E, Fung I (1987) Methane emissions from natural wetlands Global distribution, area and environmental characteristics of sources. Global Biogeochem Cycles, 1: 61–88.

    Article  Google Scholar 

  • Matthews E, Fung I, Lerner J (1991) Methane emission from rice cultivation: geographic and seasonal distribution of cultivated areas and emissions. Glob Biogeochem Cycles, 5, 3–24.

    Article  Google Scholar 

  • Prinn RG, Cunnold D, Simmonds P, Alyea F, Boldi R, Crawfort A, Fraser P, Gutzler D, Hartley D, Rosen R, Rasmussen R (1992) Global average concentration and trends for hydroxil radical deduced from ALE/GAGE Triehiorethane (Methyl Chloroform) data for 1978–1990. J Geoph Res, 97, N D2: 2445–2461.

    Google Scholar 

  • Fraser P, Gutzler D, Hartley D, rosen R, Rasmussen R (1992) Global average concentration and trends for hydroxil radical deduced from ALE/GAGE Trichlorethane (Methyl Chloroform) data for 1978–1990. J Geohh res, 97, N D2: 24457–2461.

    Google Scholar 

  • Quay PD, King SL(1991) Carbon isotopic composition of atmospheric CH4: fossil and biomass burning source strength. Glob Biochem Cycles, 5: 25–47.

    Article  Google Scholar 

  • Rasmussen RA, Khalil MAK (1991) Methane emissions from sources in China: rice fields, biogas pits, cattle, urban areas & wet-lands. EOS, v. 57, N 39: 689.

    Google Scholar 

  • Roulet N, Moore T, Bubier J, Lafleur P (1992) Northern fens: methane flux and climate change. Tellus, 44B, N 2: 100–105.

    Google Scholar 

  • Schnell RC, Lin RC, Oltmans SJ, et al. (1991) Decrease of summer tropospheric ozone concentrations in Antarctica. Nature, 351: 726–729.

    Article  Google Scholar 

  • Striegl RG, Mc Connanger TA, Thorstenson DC, Weeks EP, Woodward JC(1992) Consumption of atmospheric methane by desert soils. Nature, 357, N 6374: 145–147.

    Article  Google Scholar 

  • Taylor J A, Brasseur GP, Zimmerman PR, Cicerone RJ (1991), A study of the sources and sinks of methane and methyl’ chloroform using a global three dimensional Lagrangian tropospheric tracer transport model. J Geoph Res, 96, N D2: 3013–3044.

    Article  Google Scholar 

  • Vaghjianai G, Ravisharikara ARC 1991. ) Rate coefficient for the reaction of OH with CH4: Implications to the atmospheric lifetime and budget of methane. Nature, 350: 406–409.

    Google Scholar 

  • Wahlen M, Tanaka N, Henry R et al. (l988) Carbon-14 in methane sources and in atmospheric methane: the contribution from fossil carbon. Science, 245: 286–290.

    Article  Google Scholar 

  • Whalen SC, Reeburg WS (1988) A methane flux time series for tundra environments. Glob Biogeochem Cycles, 2: 399–409.

    Article  Google Scholar 

  • WMO, UNEP (19913 Scientific Assessment of ozone depletion, 1991. Global ozone research and monitoring Project, Rep. N 25, NASA.

    Google Scholar 

  • Wuebbles DJ, Tamaresis JS (1992) The role of methane in the global environment, In “The global Cycle of Methane” CM. Khalil ed. 3 NATO-ASI, Ser., Springer Verlag.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Karol, I.L. (1993). The Methane Atmospheric Cycle. In: Chanin, ML. (eds) The Role of the Stratosphere in Global Change. NATO ASI Series, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78306-7_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78306-7_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78308-1

  • Online ISBN: 978-3-642-78306-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics