Skip to main content

Implications of Increased Solar UV-B for Terrestrial Vegetation

  • Conference paper
The Role of the Stratosphere in Global Change

Part of the book series: NATO ASI Series ((ASII,volume 8))

Abstract

Potential damage to photosynthesis and other plant processes by increased UV-B has been demonstrated at the physiological level and for a few species at the stand level in the field. Other responses of vegetation including shifts in competitive balance of plant species may be of equal importance. Interactions with other environmental factors and difficulties in making realistic assessments are discussed.

This chapter is an excerpt from a more comprehensive review in: Boote K, Sinclair TR, Bennett JM, Paulsen GM (eds) (to be published) American Society Agronomy, Madison, Wisconsin (with permission).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailaré CL, Barnes PW, Kendrick RE (1991) Photomorphogenic effects of UV-B radiation on hypocotyl elongation in wild type and stable- phytochrome-deficient mutant seedlings of cucumber. Physiol Plant 83: 652–658

    Article  Google Scholar 

  • Barnes PW, Flint SD, Caldwell MM (1987) Photosynthesis damage and protective pigments in plants from a latitudinal arctic/alpine gradient exposed to supplemental UV-B radiation in the field. Arctic Alpine Res 19: 21–27

    Article  Google Scholar 

  • Barnes PW, Flint SD, Caldwell MM (1990) Morphological responses of crop and weed species of different growth forms to ultraviolet-B radiation. Am J Bot 77: 1354 - 1360

    Article  Google Scholar 

  • Barnes PW, Jordan PW, Gold WG, Flint SD, Caldwell MM (1988) Competition, morphology and canopy structure in wheat (Triticum aestivum L.) and wild oat (Avena fatua L.) exposed to enhanced ultraviolet-B radiation. Funct Ecol 2: 319–330

    Article  Google Scholar 

  • Bartholic JF, Halsey LH, Garrard LA (1975) Field trials with filters to test for effects of UV radiation on agricultural productivity. In: Nachtwey DS, Caldwell MM, Biggs RH (eds) Impacts of climatic change on the biosphere. CIAP Monograph series. Climatic Impact Assessment Program, Washington, D.C., p 4–61 to 4–71

    Google Scholar 

  • Becwar MR, Moore FD, Burke MJ (1982) Effects of deletion and enhancement of ultraviolet-B (280-315nm) radiation on plants grown at 3000 m elevation. J Am Soc Hort Sci 107: 771–774

    Google Scholar 

  • Beggs CJ, Schneider-Ziebert U, Wellmann E (1986) UV-B radiation and adaptive mechanisms in plants. In: Worrest RC, Caldwell MM (eds) Stratospheric ozone reduction, solar ultraviolet radiation and plant life. Springer, Berlin, p 235–250

    Chapter  Google Scholar 

  • Beggs CJ, Stolzer-Jehle A, Wellmann E (1985) Isoflavonoid formation as an indicator of UV stress in bean (Phaseolus vulgaris L.) leaves. Plant Physiol 79: 630–634

    Article  Google Scholar 

  • Berenbaum M (1988) Effects of electromagnetic radiation on insect-plant interactions. In: Heinrichs EA (ed) Plant stress-insect interactions. John Wiley, New York, p 167–185

    Google Scholar 

  • Beyschlag W, Barnes PW, Flint SD, Caldwell MM (1988) Enhanced UV-B irradiation has no effect on photosynthetic characteristics of wheat (Triticum aestivum L.) and wild oat (Avena fatua L.) under greenhouse and field conditions. Photosynthetica 22: 516–525

    Google Scholar 

  • Bogenrieder A, Klein R (1977) Die Rolle des UV-Lichtes beim sog. Auspflanzungsschock von Gewächshaussetzlingen. Angewandte Botanik 51: 99–107

    Google Scholar 

  • Bornman JF (1986) Inhibition of photosystem II by blue light and ultraviolet radiation: a comparison. Photobiochem Photobiophy 11: 9–17

    Google Scholar 

  • Bornman JF (1989) Target sites of UV-B radiation in photosynthesis of higher plants. J Photochem Photobiol, B: Biology 4: 145–158

    Google Scholar 

  • Bornman JF, Björn LO, Akerlund HE (1984) Action spectrum for inhibition by ultraviolet radiation of photosystem II activity in spinach thylakoids. Photobiochem Photobiophy 8: 305–313

    Google Scholar 

  • Brandle JR, Campbell WF, Sisson WB, Caldwell MM (1977) Net photosynthesis, electron transport capacity, and ultrastructure of Pisum sativum L. exposed to ultraviolet-B radiation. Plant Physiol 60: 165–169

    Article  Google Scholar 

  • Brodführer U (1955) Der Einfluss einer abgestuften Dosierung von ultravioletter Sonnenstrahlung auf das Wachstum der Pflanzen. Planta 45: 1–56

    Article  Google Scholar 

  • Caldwell MM (1968) Solar ultraviolet radiation as an ecological factor for alpine plants. Ecol Monographs 38: 243–268

    Article  Google Scholar 

  • Caldwell MM (1971) Solar ultraviolet radiation and the growth and development of higher plants. In: Giese AC (ed) Photophysiology. Academic, New York, p 131–177

    Google Scholar 

  • Caldwell MM (1981) Plant response to solar ultraviolet radiation. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology, Vol. 12A Physiological plant ecology I. Responses to the physical environment. Springer, Berlin, p 169–197

    Google Scholar 

  • Caldwell MM (1984) Effects of UV radiation on plants in the transition region to blue light. In: Senger H (ed) Blue light effects in biological systems. Springer, Berlin, p 20–28

    Chapter  Google Scholar 

  • Caldwell MM, Camp LB, Warner CW, Flint SD (1986) Action spectra and their key role in assessing biological consequences of solar UV-B radiation change. In: Worrest RC, Caldwell MM (eds) Stratospheric ozone reduction, solar ultraviolet radiation and plant life. Springer, Berlin, p 87–111

    Chapter  Google Scholar 

  • Caldwell MM, Gold WG, Harris G, Ashurst CW (1983) A modulated lamp system for solar UV-B (280–320 nm) supplementation studies in the field. Photochem Photobiol 37: 479–485

    Article  Google Scholar 

  • Caldwell MM, Teramura AH, Tevini M (1989) The changing solar ultraviolet climate and the ecological consequences for higher plants. Trends Ecol Evol 4: 363–367

    Article  Google Scholar 

  • Cen YP, Bornman JF (1990) The response of bean plants to UV-B radiation under different irradiances of background visible light. J Exp Bot 41: 1489–1495

    Article  Google Scholar 

  • Coblentz, WW (1932) The Copenhagen meeting of the Second International Congress on Light. Science 76: 412–415

    Article  Google Scholar 

  • Day TA, Vogelmann TC, DeLucia EH (to be published) Are some plant life forms more effective than others in screening out ultraviolet-B radiation? Oecologia

    Google Scholar 

  • DeLucia EH, Day TA, Vogelman TC (1991) Ultraviolet-B radiation and the Rocky Mountain environment: Measurement of incident light and penetration into foliage. Current Topics Plant Biochem Physiol 10: 32–48

    Google Scholar 

  • Flint SD, Jordan PW, Caldwell MM (1985) Plant protective response to enhanced UV-B radiation under field conditions: Leaf optical properties and photosynthesis. Photochem Photobiol 41: 95–99

    Google Scholar 

  • Frederick JE, Snell HE, Haywood EK (1989) Solar ultraviolet radiation at the earth’s surface. Photochem Photobiol 50: 443–450

    Article  Google Scholar 

  • Gold WG, Caldwell MM (1983) The effects of ultraviolet-B radiation on plant competition in terrestrial ecosystems. Physiol Plant 58: 435–444

    Article  Google Scholar 

  • Greenberg BM, Gaba V, Canaai O, Malkin S, Mattoo AK, Edelman M (1989) Separate photosensitizers mediate degradation of the 32-kDa photosystem II reaction center protein in the visible and UV spectral regions. Proc Natl Acad Sci 86: 6617–6620

    Article  Google Scholar 

  • Kramer GF, Norman HA, Krizek DT, Mirecki RM (1991) Influence of UV- B radiation on polyamines, lipid peroxidation and membrane lipids in cucumber. Phytochemistry 30: 2101–2108

    Article  Google Scholar 

  • Langer B, Wellmann E (1990) Phytochrome induction of photoreactivating enzyme in Phaseolus vulgaris L. seedlings. Photochem Photobiol 52: 861–863

    Article  Google Scholar 

  • Larson RA, Berenbaum MR (1988) Environmental phototoxicity. Solar ultraviolet radiation affects the toxicity of natural and man-made chemicals. Environ Sci Tech 22: 354–360

    Google Scholar 

  • Lautensghlager-Fleury D (1955) Uber die Ultraviolettdurchlassigkeit von Blattepidermen. Ber Schweiz Bot Ges 65: 343–386

    Google Scholar 

  • Mirecki RM, Teramura AH (1984) Effects of ultraviolet-B irradiance on soybean. V. The dependence of plant sensitivity on the photosynthetic photon flux density during and after leaf expansion. Plant Physiol 74: 475–480

    Google Scholar 

  • Mohr H (1986) Coaction between pigment systems. In: Kendrick RE, Kronenberg GHM (eds) Photomorphogenesis in plants. Martinus Nijhoff/Dr. W. Junk, Dordrecht, p 547–564

    Google Scholar 

  • Murali NS, Teramura AH (1985a) Effects of ultraviolet-B irradiance on soybean. VI. Influence of phosphorus nutrition on growth and flavonoid content. Physiol Plant 63: 413–416

    Google Scholar 

  • Murali NS, Teramura AH (1985b) Effects of ultraviolet-B irradiance on soybean. VII. Biomass and concentration and uptake of nutrients at varying P supply. J Plant Nutr 8: 177–192

    Google Scholar 

  • Murali NS, Teramura AH (1986a) Intraspecific differences in Cucumis sativus sensitivity to ultraviolet-B radiation. Physiol Plant 68: 673–677

    Article  Google Scholar 

  • Murali NS, Teramura AH (1986b) Effectiveness of UV-B radiation on the growth and physiology of field-grown soybean modified by water stress. Photochem Photobiol 44: 215–219

    Article  Google Scholar 

  • Murali NS, Teramura AH, Randall SK (1988) Response differences between two soybean cultivars with contrasting UV-B radiation sensitivities. Photochem Photobiol 48: 653–657

    Article  Google Scholar 

  • Panagopoulos I, Bornman JF, Björn LO (1989) The effect of UV-B and UV-C radiation on Hibiscus leaves determined by ultraweak luminescence and fluorescence induction. Physiol Plant 76: 461–465

    Article  Google Scholar 

  • Panagopoulos I, Bornman JF, Björn LO (1990) Effects of ultraviolet radiation and visible light on growth, fluorescence induction, ultraweak luminescence and peroxidase activity in sugar beet plants. J Photochem Photobiol B: Biol 8: 73–87

    Google Scholar 

  • Panagopoulos I, Bornman JF, Björn LO (1992) Response of sugar beet plants to ultraviolet-B (280–320 nm) radiation and Cercospora leaf spot disease. Physiol Plant 84: 140–145

    Article  Google Scholar 

  • Pang Q, Hays JB (1991) UV-B-inducible and temperature-sensitive photoreactivation of cyclobutane pyrimidine dimers in Arabidopsis thaliana. Plant Physiol 95: 536–543

    Article  Google Scholar 

  • Renger G, Völker M, Eckert HJ, Fromme R, Hohm-Veit S, Gräber P (1989) On the mechanism of photosystem II deterioration by UV-B irradiation. Photochem Photobiol 49: 97–105

    Article  Google Scholar 

  • Robberecht R, Caldwell MM (1978) Leaf epidermal traiismittance of ultraviolet radiation and its implications for plant sensitivity to ultraviolet-radiation induced injury. Oecologia 32: 277–287

    Article  Google Scholar 

  • Robberecht R, Caldwell MM (1983) Protective mechanisms and acclimation to solar ultraviolet-B radiation in Oenothera stricta. Plant Cell Environ 6: 477–485

    Google Scholar 

  • Robberecht R, Caldwell MM (1986) Leaf UV optical properties of Rumex patientia L. and Rumex obtusifolius L. in regard to a protective mechanism against solar UV-B radiation injury. In: Worrest RC, Caldwell MM (eds) Stratospheric ozone reduction, solar ultraviolet radiation and plant life. Springer, Berlin, p 251–259

    Chapter  Google Scholar 

  • Robberecht R, Caldwell MM, Billings WD (1980) Leaf ultraviolet optical properties along a latitudinal gradient in the arctic-alpine life zone. Ecology 61: 612–619

    Article  Google Scholar 

  • Ros J, (1990) Zur Wirkung von UV-Strahlung auf das Streckungswachstum von Sonnenblumenkeimlingen (Helianthus annuus L.) Karlsruher Beiträge zur Entwichlungs- und Ökophysiologie der Pflanzen (Universität Karlsruhe) 8: 1–157

    Google Scholar 

  • Rupert CS (1986) Cellular repair and assessment of UV-B radiation damage. In: Worrest RC, Caldwell MM (eds) Stratospheric ozone reduction, solar ultraviolet radiation and plant life. Springer, Berlin, p 127–137

    Chapter  Google Scholar 

  • Ryel RJ, Barnes PW, Beyschlag W, Caldwell MM, Flint SD (1990) Plant competition for light analyzed with a multispecies canopy model. I. Model development and influence of enhanced UV-B conditions on photosynthesis in mixed wheat and wild oat canopies. Oecologia 82: 304–310

    Google Scholar 

  • Sinclair TR, N’Diaye O, Biggs RH (1990) Growth and yield of field-grown soybean in response to enhanced exposure to ultraviolet-B radiation. J Environ Quality 19: 478–481

    Article  Google Scholar 

  • Sisson WB, Caldwell MM (1975) Lamp/filter systems for simulation of solar UV irradiance under reduced atmospheric ozone. Photochem Photobiol 21: 453–456

    Article  Google Scholar 

  • Sullivan JH, Teramura AH (1990) Field study of the interaction between solar ultraviolet-B radiation and drought on photosynthesis and growth in soybean. Plant Physiol 92: 141–146

    Article  Google Scholar 

  • Teramura AH (1980) Effects of ultraviolet-B irradiances on soybean. I. Importance of photosynthetically active radiation in evaluating ultraviolet-B irradiance effects on soybean and wheat growth. Physiol Plant 48: 333–339

    Article  Google Scholar 

  • Teramura AH (1983) Effects of ultraviolet-B radiation on the growth and yield of crop plants. Physiol Plant 58: 415–427

    Article  Google Scholar 

  • Teramura AH (1986) Current risks and uncertainties of stratospheric ozone depletion upon plants. Risk assessment for Environmental Protection Agency. EPA, Washington D.C.

    Google Scholar 

  • Teramura AH (1990) Implications of stratospheric ozone depletion upon plant production. HortScience 25: 1557–1560

    Google Scholar 

  • Teramura AH, Biggs RH, Kossuth S (1980) Effects of ultraviolet-B irradiances on soybean. II. Interaction between ultraviolet-B and photosynthetically active radiation on net photosynthesis, dark respiration, and transpiration. Plant Physiol 65: 483–488

    Google Scholar 

  • Teramura AH, Murali NS (1986) Intraspecific differences in growth and yield of soybean exposed to ultraviolet-B radiation under greenhouse and field conditions. Environ Exp Bot 26: 89–95

    Article  Google Scholar 

  • Teramura AH, Sullivan JH, Lydon J (1990a) Effects of UV-B radiation on soybean yield and seed quality: A six-year field study. Physiol Plant 80: 5–11

    Google Scholar 

  • Teramura AH, Sullivan JH, Ziska LH (1990b) Interaction of elevated ultraviolet B radiation and C02 on productivity and photosynthetic characteristics in wheat, rice, and soybean. Plant Physiol 94: 470–475

    Article  Google Scholar 

  • Teramura AH, Ziska LH, Sztein AE (1991) Changes in growth and photosynthetic capacity of rice with increased UV-B radiation. Physiol Plant 83: 373–380

    Article  Google Scholar 

  • Tevini M, Grusemann P, Fieser G (1988) Assessment of UV-B stress by chlorophyll fluorescence analysis. In: Lichtenthaler HK (ed) Applications of chlorophyll fluorescence. Kluwer, Dordrecht, p 229–238

    Google Scholar 

  • Tevini M, Braun J, Fieser G (1991a) The protective function of the epidermal layer of rye seedlings against ultraviolet-B radiation. Photochem Photobiol 53: 329–333

    Article  Google Scholar 

  • Tevini M, Mark U, Fieser G, Saile M (1991b) Effects of enhanced solar UV-B radiation on growth and function of crop plant seedlings. In: Riklis E (ed) Photobiology. Plenum, New York p 635–649

    Google Scholar 

  • Tevini M, Teramura AH (1989) UV-B effects on terrestrial plants. Photochem Photobiol 50: 479–487

    Article  Google Scholar 

  • Toth A (1949) Quantitative Untersuchungen über die Wirkungen der UV- Bestrahlung auf die Plasmapermeabilität. Österreich Bot Z 96: 161–195

    Google Scholar 

  • Warner CW, Caldwell MM (1983) Influence of photon flux density in the 400-700 nm waveband on inhibition of photosynthesis by UV-B (280–320 nm) irradiation in soybean leaves: Separation of indirect and immediate effects. Photochem Photobiol 38: 341–346

    Google Scholar 

  • Wellman E (1974) Regulation der Flavonoidbiosynthese durch ultraviolettes Licht und Phytochrom in Zellkulturen und Keimlingen von Petersilie (Petroselinum hortense Hoffm.V Ber Dtsch Bot Ges 87: 267–273

    Google Scholar 

  • Yerkes CT, Kramer DM, Fenton JM, Crofts AR (1989) UV- photoinhibition: Studies in vitro and in intact plants. In: M. Baltscheffsky (ed.) Current research in photosynthesis, Vol II. Kluwer, Dordrecht, p 381–384

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Caldwell, M.M., Flint, S.D. (1993). Implications of Increased Solar UV-B for Terrestrial Vegetation. In: Chanin, ML. (eds) The Role of the Stratosphere in Global Change. NATO ASI Series, vol 8. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78306-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78306-7_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78308-1

  • Online ISBN: 978-3-642-78306-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics