Skip to main content

GTPase Activating Proteins

  • Chapter
Book cover GTPases in Biology I

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 108 / 1))

Abstract

Small GTPases such as ras p21 have low intrinsic GTPase activity and depend on GTPase activating proteins (GAPs) to convent their active GTP-bound forms to their inactive GDP-bound counterparts (Bollag and McCormick 1991b). GAPs therefore appear to be major negative regulators of these GTPases (Fig. 1). In addition, we and others have proposed the possibility that GAP-mediated down-regulation may be coupled to signal output so that GAPs comprise part of small GTPase effector systems (Adari et al. 1988; Calés et al. 1988; McCormick 1989; Hall 1990). This proposal is based mainly on the fact that GAPs interact only with the GTP-bound forms of ras p21 proteins (a criterion for a ras effector), and that GAPs bind ras p21 proteins at or near the so-called effector-binding site. The hypothesis has gained support from the recent observation that certain effectors of heterotrimeric G-proteins are also GAPs for these proteins (Berstein et al. 1992; Arshavsky et al. 1992), but remains controversial for small GTPases such as ras p21. In addition to the major issue of a possible role in effector functions for GAPs, a number of fundamental questions relating to their function have yet to be solved. For example, we have very little idea how, at the molecular level, GAPs stimulate GTPase activity or how GAP activities are regulated in cells. In this chapter, we will discuss known properties of GAPs for ras p21 and related proteins and speculate about their possible functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adari H, Lowy DR, Willumsen BM, Der CJ, McCormick F (1988) Guanosine triphosphatase activating protein (GAP) interacts with the p21 ras effector binding domain. Science 240:518–521

    Article  PubMed  CAS  Google Scholar 

  • Arshavsky VY, Bownds MD (1992) Regulation of deactiation of photoreceptor G protein by its target enzyme and cGMP. Nature 357:416–417

    Article  PubMed  Google Scholar 

  • Ballester R, Marchuk D, Boguski M, Saulino A, Letcher R, Wigler M, Collins F (1990) The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 63:851–859

    Article  PubMed  CAS  Google Scholar 

  • Ballester R, Michaeli T, Ferguson K, Xu HP, McCormick F, Wigler M (1989) Genetic analysis of ammmalian GAP expressed in yeast. Cell 59:681–686

    Article  PubMed  CAS  Google Scholar 

  • Bernstein G, Blank John DY, Exton JH, Rhee SG, Ross EM (1992) Phospholipase beta-1 is a GTPase Activating Protein for Gq/11, its physiological regulator. Cell 70:411–418

    Article  Google Scholar 

  • Bollag G, McCormick F (1991a) Differential regulation of rasGAP and neurofibromatosis gene product activities. Nature 351:576–579

    Article  PubMed  CAS  Google Scholar 

  • Bollag G, McCormick F (1991b) Regulators and effectors of ras proteins. Annu Rev Cell Biol 7:601–632

    Article  PubMed  CAS  Google Scholar 

  • Brott BK, Decker S, Shafer J, Gibbs JB, Jove R (1991) GTPase-activating protein interactions with the viral and cellular Src kinases. Proc Natl Acad Sci USA 88:755–759

    Article  PubMed  CAS  Google Scholar 

  • Calés C, Hancock JF, Marshall CJ, Hall A (1988) The cytoplasmic protein GAP is implicated as the target for regulation by the ras gene product. Nature 332:548–551

    Article  PubMed  Google Scholar 

  • Cichowski K, McCormick F, Brugge JS (1992) Three src-related protein tyrosine kinases, fyn, lyn, and yes coprecipitate with GAP in thrombin-activated platelets. J Biol Chem (in press)

    Google Scholar 

  • Diekmann D, Brill S, Garett MD, Totty N, Hsuan J, Monfries C, Hall C, Lim L, Hall A (1991) Bcr encodes a GTPase-activating protein for p21rac. Nature 351:400–402

    Article  PubMed  CAS  Google Scholar 

  • Ellis C, Moran M, McCormick F, Pawson T (1990) Phosphorylation of GAP and GAP-associated proteins by transforming and mitogenic tyrosine kinases. Nature 343:377–381

    Article  PubMed  CAS  Google Scholar 

  • Fantl WJ, Escobedo JA, Martin GA, Turck CW, del Rosario M, McCormick F, Williams LT (1992) Distinct phosphotyrosines on a growth factor receptor bind to specific molecules that mediate different signaling pathways. Cell 69:413–423

    Article  PubMed  CAS  Google Scholar 

  • Frech M, John J, Pizon V, Chardin P, Tavitian A, Clark R, McCormick F, Wittinghofer A (1990) Inhibition of GTPase activating protein stimulation of Ras-p21 GTPase by the Krev-1 gene product. Science 249:169–171

    Article  PubMed  CAS  Google Scholar 

  • Garrett MD, Self AJ, van Oers C, Hall A (1989) Identification of distinct cytoplasmic targets for ras/R-ras and rho regulatory proteins. J Biol Chem 264:10–13

    PubMed  CAS  Google Scholar 

  • Garrett MD, Major GN, Totty N, Hall A (1991) Purification and N-terminal sequence of the p21rho GTPase-activating protein, rho GAP. Biochem J 276 (pt3):833–836

    PubMed  CAS  Google Scholar 

  • Gaul U, Mardon G, Rubin GM (1992) A putative ras GTPase Activating Protein acts as a negative regulator of Signaling by the Sevenless receptor tyrosine kinase. Cell 68:1007–1019

    Article  PubMed  CAS  Google Scholar 

  • Gibbs JB, Marshall MS (1989) The ras oncogene — an important regulatory element in lower eucaryotic organisms. Microbiol Rev 53:171–185

    PubMed  CAS  Google Scholar 

  • Gideon P, John J, Frech M, Lautwein A, Clark R, Scheffler JE, Wittinghofer A (1992) Mutational and kinetic analyses of the GTPase-activating protein (GAP)-p21 interaction: the C-terminal domain of GAP is not sufficient for full activity. Mol Cell Biol 12:2050–2056

    PubMed  CAS  Google Scholar 

  • Golubic M, Tanaka K, Dobrowolski S, Wood D, Tsai M-H, Marshall M, Tamanoi F, Stacey DW (1991) The GTPase stimulatory activities of the neurofibromatosis type 1 and the yeast IRA2 proteins are inhibited by arachidonic acid. EMBO J 10:2897–2903

    PubMed  CAS  Google Scholar 

  • Hall A (1990) ras and GAP — who’s controlling whom? Cell 61:921–923

    Article  PubMed  CAS  Google Scholar 

  • Hall C, Monfries C, Smith P, Lim HH, Ahmed RKS, Vanniasingham V, Leung T, Lim L (1990) Novel human brain cDNA encoding a 34000 Mr protein n-chimaerin, related to both the regulatory domain of protein kinase C and BCR, the product of the breakpoint cluster region gene. J Mol Biol 211:11–16

    Article  PubMed  CAS  Google Scholar 

  • Imai Y, Miyake S, Hughes DA, Yamamoto M (1991) Identification of a GTPase-activating protein homolog in Schizosaccharomyces pombe. Mol Cell Biol 11:3088–3094

    PubMed  CAS  Google Scholar 

  • Kaplan DR, Morrison DK, Wong G, McCormick F, Williams LT (1990) PDGF beta-receptor stimulates tyrosine phosphorylation of GAP and association of GAP with a signaling complex. Cell 61:125–133

    Article  PubMed  CAS  Google Scholar 

  • Kashishian A, Kazlauskas A, Cooper JA (1992) Phosphorylation sites in the PDGF receptor with different specificities for binding GAP and PI3 kinase in vivo. EMBO J 11:1373–1382

    PubMed  CAS  Google Scholar 

  • Kazlauskas A, Ellis C, Pawson T, Cooper JA (1990) Binding of GAP to activated PDGF receptors. Science 247:1578–1581

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Bollag G, Clark R, Stevens J, Conroy L, Fults D, Ward K, Friedman E, Samowitz W, Robertson M, Bradley P, McCormick F, White R, Cawthon R (1992) Somatic mutations in the neurofibromatosis 1 gene in human tumors. Cell 69:275–281

    Article  PubMed  CAS  Google Scholar 

  • Marchuk DA, Saulino AM, Tavakkol R, Swaroop M, Wallace MR, Andersen LB, Mitchell AL, Gutmann DH, Boguski M, Collins FS (1991) cDNA cloning of the type 1 neurofibromatosis gene: complete sequence of the NF1 gene product. Genomics 11:931–940

    Article  PubMed  CAS  Google Scholar 

  • Martin GA, Viskochil D, Bollag G, McCabe PC, Crosier WJ, Haubruck H, Conroy L, Clark R, O’Connell P, Cawthon RM, Innis MA, McCormick F (1990) The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 63:843–849

    Article  PubMed  CAS  Google Scholar 

  • Martin GA, Yatani A, Clark R, Conroy L, Polakis P, Brown AM, McCormick F (1992) GAP domains responsible for ras p21-dependent inhibition of muscarinic atrial K+ channel currents. Science 255:192–194

    Article  PubMed  CAS  Google Scholar 

  • McCormick F (1989) ras GTPase activating protein: signal transmitter and signal terminator. Cell 56:5–8

    Article  PubMed  CAS  Google Scholar 

  • Medema R, de Laat W, Martin GA, McCormick F, Bos J (1992) GAP SH2-SH3 domains induce gene expression in a ras-dependent fashion. Mol Cell Biol (in press)

    Google Scholar 

  • Mitts MR, Bradshaw-Rouse J, Heideman W (1991) Interactions between adenylate cyclase and the yeast GAP protein, IRAI. Science (in press)

    Google Scholar 

  • Molloy CJ, Bottaro DP, Fleming TP, Marshall MS, Gibbs JB, Aaronson SA (1989) PDGF induction of tyrosine phosphorylation of GTPase activating protein. Nature 342:711–714

    Article  PubMed  CAS  Google Scholar 

  • Moran MF, Polakis P, McCormick F, Pawson T, Ellis C (1991) Protein-tyrosine kinases regulate the phosphorylation, protein interactions, subcellular distribution, and activity of p21ras GTPase-activating protein. Mol Cell Biol 11:1804–1812

    PubMed  CAS  Google Scholar 

  • Mulcahy LS, Smith MR, Stacey DW (1985) Requirements for ras proto-oncogene function during serum-stimulated growth of NIH3T3 cells. Nature 313:241–243

    Article  PubMed  CAS  Google Scholar 

  • Nishi T, Lee PSY, Oka K, Levin VA, Tanase S, Morino Y, Saya H (1991) Differential expression of two types of the neurofibromatosis type 1 (NF1) gene transcripts related to neuronal differentiation. Oncogene 6:1555–1561

    PubMed  CAS  Google Scholar 

  • Park S, Marshall MS, Gibbs JB, Jove R (1992) Reconstitution of interactions between the Src tyrosine kinases and Ras GTPase-activating protein using a baculovirus expression system. J Biol Chem 267:11612–11618

    PubMed  CAS  Google Scholar 

  • Polakis PG, Rubinfeld B, Evans T, McCormick F (1991) Purification of a plasma membrane-associated GTPase-activating protein specific for rap1/K-rev-1 from HL60 cells. Proc Natl Acad Sci USA 88:239–243

    Article  PubMed  CAS  Google Scholar 

  • Rubinfeld B, Munemitsu S, Clark R, Conroy L, Watt K, Crosier W, McCormick F, Polakis P (1991) Molecular cloning of a GTPase activating protein specific for the Krev-1 protein p21rap1. Cell 65:1033–1044

    Article  PubMed  CAS  Google Scholar 

  • Schweighoffer F, Bariat I, Chevallier-Multon M-C, Tocque B (1992) Implication of GAP in ras-dependent transactivation of a polyoma enhancer sequence. Science 256:825–827

    Article  PubMed  CAS  Google Scholar 

  • Settleman J, Narasimhan V, Foster LC, Weinberg RA (1992) Molecular cloning of cDNAs encoding the GAP-associated protein p190: implications for a signaling pathway from Ras to nucleus. Cell 69:539–549

    Article  PubMed  CAS  Google Scholar 

  • Smith MR, DeGudicibus SJ, Stacey DW (1986) Requirement for ras proteins during viral oncogene transformation. Nature 320:540–543

    Article  PubMed  CAS  Google Scholar 

  • Smith MR, Ryu S-H, Suh P-G, Rhee SG, Kung H-F (1989) S-phase induction and transformation of quiescent NIH 3T3 cells by microinjection of phospholipase C. Proc Natl Acad Sci USA 86:3659–3663

    Article  PubMed  CAS  Google Scholar 

  • Stacey DW, Feig LA, Gibbs JB (1991) Dominant inhibitor ras mutants selectively inhibit the activity of either cellular or oncogenic ras. Molecular and Cellular Biology 11:4053–4064

    PubMed  CAS  Google Scholar 

  • Suzuki Y, Suzuki H, Kayama T, Yoshimoto T, Shibahara S (1991) Brain tumors predominantly express the neurofibromatosis type 1 gene transcripts containing the 63 base insert in the region coding for GTPase activating protein related domain. Biochem Biophys Res Commun 181:955–961

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Matsumoto K, Tohe A (1989) IRA1, an inhibitory regulator of the RAS-cyclic AMP pathway in Saccharomyces cerevisiae. Mol Cell Biol 9:757–768

    PubMed  CAS  Google Scholar 

  • Tanaka K, Nakafuku M, Satoh T, Marshall MS, Gibbs JB, Matsumoto K, Kaziro Y, Tohe A (1990a) S. cerevisiae genes IRA1 and IRA2 encode proteins that may be functionally equivalent to mammalian ras GTPase activating protein. Cell 60:803–807

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Nakafuku M, Tamanoi F, Kaziro Y, Matsumoto K, Tohe A (1990b) IRA2, a second gene of Saccharomyces cerevisiae that encodes a protein with a domain homologous to mammalian ras GTPase-activating protein. Mol Cell Biol 10:4303–4313

    PubMed  CAS  Google Scholar 

  • Trahey M, McCormick F (1987) A cytoplasmic protein stimulates normal N-ras p21 GTPase, but does not affect oncogenic mutants. Science 238:542–545

    Article  PubMed  CAS  Google Scholar 

  • Trahey M, Wong G, Halenbeck R, Rubinfeld B, Martin GA, Ladner M, Long CM, Crosier WJ, Watt K, Koths K, McCormick F (1988) Molecular cloning of two types of GAP complementary DNA from human placenta. Science 242:1697–1700

    Article  PubMed  CAS  Google Scholar 

  • Tsai M-H, Hall A, Stacey DW (1989) Inhibition by phospholipids of the interaction between Rras, rho, and their GTPase-activating proteins. Mol Cell Biol 9:5260–5264

    PubMed  CAS  Google Scholar 

  • Vogel US, Dixon RA, Schaber MD, Diehl RE, Marshall MS, Scolnick EM, Sigal IS, Gibbs JB (1988) Cloning of bovine GAP and its interaction with oncogenic ras p21. Nature 335:90–93

    Article  PubMed  CAS  Google Scholar 

  • Wallace MR, Marchuk DA, Andersen LB, Letcher R, Odeh HM, Saulino AM, Fountain JW, Brereton A, Nicholson J, Mitchell AL, Brownstein BH, Collins FS (1990) Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science 249:181–186

    Article  PubMed  CAS  Google Scholar 

  • Walworth NC, Brennwald P, Kabcenell AK, Garrett M, Novick P (1992) Hydrolysis of GTP by Sec4 protein plays an important role in vesicular transport and is stimulated by a GTPase-activating protein in Saccharomyces cerevisiae. Mol Cell Biol 12:2017–2028

    PubMed  CAS  Google Scholar 

  • Wang Y, Boguski M, Riggs M, Rodgers L, Wigler M (1991) sar1, a gene from Schizosaccharomyces pombe encoding a protein that regulates rasl. Cell Regul 2:453–465

    PubMed  CAS  Google Scholar 

  • Wong G, Muller O, Clark R, Conroy L, Moran MF, Polakis P, McCormick F (1992) Molecular cloning and nucleic acid binding properties of the GAP-associated tyrosine phosphoprotein p62. Cell 69:551–558

    Article  PubMed  CAS  Google Scholar 

  • Xu GF, Lin B, Tanaka K, Dunn D, Wood D, Gesteland R, White R, Weiss R, Tamanoi F (1990) The catalytic domain of the neurofibromatosis type 1 gene product stimlates ras GTPase and complements ira mutants of S. cerevisiae. Cell 63:835–841

    Article  PubMed  CAS  Google Scholar 

  • Yatani A, Okabe K, Polakis P, Halenbeck R, McCormick F, Brown AM (1990) ras p21 and GAP inhibit coupling of muscarinic receptors to atrial K+ channels. Cell 61:769–776

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

McCormick, F. (1993). GTPase Activating Proteins. In: Dickey, B.F., Birnbaumer, L. (eds) GTPases in Biology I. Handbook of Experimental Pharmacology, vol 108 / 1. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78267-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78267-1_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78269-5

  • Online ISBN: 978-3-642-78267-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics