Skip to main content

Halorhodopsin: A Prokaryotic Light-Driven Active Chloride Transport System

  • Chapter

Part of the book series: Advances in Comparative and Environmental Physiology ((COMPARATIVE,volume 19))

Abstract

Because they inhabit hypersaline bodies of water, the extremely halophilic archae, such as Halobacterium halobium, have developed effective mechanisms to transport cations and anions across their cell membrane. Some of these, e.g., the electron transfer chain (Lanyi 1968; Cheah 1969, 1970; Hallberg Gradin and Colmsjö 1989), which couples proton extrusion to aerobic respiration, the sodium/proton antiporter (Lanyi and MacDonald 1976; Eisenbach et al. 1977; Lanyi and Silverman 1979; Konishi and Murakami 1988, 1990), and the proton-transport ATPase (Hochstein et al. 1987; Mukohata and Yoshida 1987b; Nanba and Mukohata 1987; Stan-Lotter and Hochstein 1989; Ihara and Mukohata 1991; Schobert 1991; Stan-Lotter et al. 1991) are similar to transport systems in less exotic forms of life. Others are unique to this group of organisms, however: they are the ion-motive bacterial rhodopsins (reviewed in Lanyi 1990; Mathies et al. 1991) which, together with the halobacterial sensory rhodopsins (reviewed in Spudich and Bogomolni 1988), resemble the visual pigments of higher organisms in what appears to be a striking example of convergent evolution.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Albeck A, Friedman N, Sheves M, Ottolenghi M (1989) Factors affecting the absorption maxima of acidic forms of bacteriorhodopsin. A study with artificial pigments. Biophys J 59: 1259–1265

    Article  Google Scholar 

  • Alshuth T, Stockburger M, Hegemann P, Oesterhelt D (1985) Structure of the retinal chromophore in halorhodopsin. A resonance Raman study. FEBS Lett 179: 55–59

    Article  CAS  Google Scholar 

  • Ames JB, Mathies RA (1990) The role of back-reactions and proton uptake during the N→O transition in bacteriorhodopsin’s photocycle: a kinetic resonance Raman study. Biochemistry 29: 7181–7190

    Article  PubMed  CAS  Google Scholar 

  • Ariki M, Schobert B, Lanyi JK (1986) Effects of arginine modification on the photocycle of halorhodopsin. Arch Biochem Biophys 248: 532–539

    Article  PubMed  CAS  Google Scholar 

  • Bauer PJ, Dencher NA, Heyn MP (1976) Evidence for chromophore-chromophore interaction in the purple membrane from reconstitution experiments of the chromophore-free membrane. Biophys Struct Mech 2: 79–92

    Article  PubMed  CAS  Google Scholar 

  • Becher B, Ebrey TG (1976) Evidence for chromophore-chromophore interaction in the purple membrane of Halobacterium halobium. Biochem Biophys Res Commun 69: 1–6

    Article  PubMed  CAS  Google Scholar 

  • Blanck A, Oesterhelt D (1987) The halorhodopsin gene II. Sequence, primary structure of halorhodopsin, and comparison with bacteriorhodopsin. EMBO J 6: 265–273

    PubMed  CAS  Google Scholar 

  • Blaurock AE, Stoeckenius W (1971) Structure of the purple membrane. Nature 233: 152–155

    Article  CAS  Google Scholar 

  • Bogomolni RA, Baker RA, Lozier RH, Stoeckenius W (1976) Light-driven proton translocations in Halobacterium halobium. Bioehim Biophys Acta 440: 68–88

    Article  CAS  Google Scholar 

  • Chang C-H, Chen J-G, Govindjee R, Ebrey TG (1985) Cation binding by bacteriorhodopsin. Proc Natl Acad Sci USA 82: 396–400

    Article  PubMed  CAS  Google Scholar 

  • Chang C-H, Liu S-Y, Jonas R, Govindjee R (1987) The pink membrane: the stable photo-product of deionized purple membrane. Biophys J 52: 617–623

    Article  PubMed  CAS  Google Scholar 

  • Cheah KS (1969) Properties of electron transport particles from Halobacterium cutirubrum. The respiratory chain system. Bioehim Biophys Acta 180: 320–333

    Article  CAS  Google Scholar 

  • Cheah KS (1970) Properties of the membrane-bound respiratory chain of Halobacterium salinarium. Bioehim Biophys Acta 216: 43–53

    Article  CAS  Google Scholar 

  • Danon A, Caplan SR (1976) Stimulation of ATP synthesis in Halobacterium halobium R1 by light-induced or artificially created proton electrochemical potential gradients across the cell membrane. Bioehim Biophys Acta 423: 133–140

    Article  CAS  Google Scholar 

  • De Groot HJM, Harbison GS, Herzfeld J, Griffin RG (1989) Nuclear magnetic resonance study of the Schiff base in bacteriorhodopsin: counterion effects on the 15N shift anisotropy. Biochemistry 28: 3346–3353

    Article  PubMed  Google Scholar 

  • De Groot HJM, Smith SO, Courtin J, Van den Berg E, Winkel C, Lugtenburg J, Griffin RG, Herzfeld J (1990) Solid-state 13C and 15NNMR study of the low pH forms of bacteriorhodopsin. Biochemistry 29: 6873–6883

    Article  PubMed  Google Scholar 

  • Dencher NA, Heyn MP (1979) Bacteriorhodopsin monomers pump protons. FEBS Lett 108: 307–310

    Article  PubMed  CAS  Google Scholar 

  • Dencher NA, Dresselhaus D, Zaccai G, Büldt G (1989) Structural changes in bacteriorhodopsin during proton translocation revealed by neutron diffraction. Proc Natl Acad Sci USA 86: 7876–7879

    Article  PubMed  CAS  Google Scholar 

  • Dér A, Fendler K, Keszthelyi L, Bamberg E (1985) Primary charge separation in halorhodopsin. FEBS Lett 187: 233–236

    Article  Google Scholar 

  • Dér A, Tóth-Boconádi R, Keszthelyi L (1989) Bacteriorhodopsin as a possible chloride pump. FEBS Lett 259: 24–26

    Article  Google Scholar 

  • Dér A, Száraz S, Tóth-Boconádi R, Tokaji Z, Keszthelyi L, Stoeckenius W (1991) Alternative translocation of protons and halide ions by bacteriorhodopsin. Proc Natl Acad Sci USA 88: 4751–4755

    Article  PubMed  Google Scholar 

  • Diller R, Stockburger M, Oesterhelt D, Tittor J (1987) Resonance Raman study of intermediates of the halorhodopsin photocycle. FEBS Lett 217: 297–304

    Article  CAS  Google Scholar 

  • Druckmann S, Samuni A, Ottolenghi M (1979) Dynamics of pH-induced spectral changes in bacteriorhodopsin. Biophys J 26: 143–145

    Article  PubMed  CAS  Google Scholar 

  • Duschl A, McCloskey MA, Lanyi JK (1988) Reconstitution of halorhodopsin. Properties of halorhodopsin-containing proteoliposomes. J Biol Chem 263: 17016–17022

    PubMed  CAS  Google Scholar 

  • Duschl A, Lanyi JK, Zimányi L (1990) Properties and photochemistry of a halorhodopsin from the haloalkalophile, Natronobacterium pharaonis. J Biol Chem 265: 1261–1267

    PubMed  CAS  Google Scholar 

  • Eisenbach M, Cooper S, Garty H, Johnstone RM, Rottenberg H, Caplan SR (1977) Light-driven sodium transport in sub-bacterial particles of Halobacterium halobium. Bioehim Biophys Acta 465: 599–613

    Article  CAS  Google Scholar 

  • Falke JJ, Chan SI, Steiner M, Oesterhelt D, Towner P, Lanyi JK (1984) Halide binding by the purified halorhodopsin chromoprotein. II New chloride binding sites revealed by 35CI NMR. J Biol Chem 259: 2185–2189

    PubMed  CAS  Google Scholar 

  • Fischer U, Oesterhelt D (1979) Chromophore equilibria in bacteriorhodopsin. Biophys J 28: 211–230

    Article  PubMed  CAS  Google Scholar 

  • Fischer U, Towner P, Oesterhelt D (1981) Light induced isomerization, at acid pH, initiates hydrolysis of bacteriorhodopsin to bacterio-opsin and 9 -cis retinal. Photochem Photobiol 33: 529–537

    Article  CAS  Google Scholar 

  • Fisher KA, Stoeckenius W (1977) Freeze-fractured purple membrane particles: protein content. Science 197: 72–74

    Article  PubMed  CAS  Google Scholar 

  • Fodor SP, Pollard WT, Gebhard R, van den Berg EM, Lugtenburg J, Mathies RA (1988a) Bacteriorhodopsin’s L550 intermediate contains a C14-C15-s-trans-retinal chromophore. Proc Natl Acad Sci USA 85: 2156–2160

    Article  PubMed  CAS  Google Scholar 

  • Fodor SP, Ames JB, Gebhard R, van den Berg EM, Stoeckenius W, Lugtenburg J, Mathies RA (1988b) Chromophore structure in bacteriorhodopsin’s N intermediate: implications for the proton pumping mechanism. Biochemistry 27: 7097–7101

    Article  PubMed  CAS  Google Scholar 

  • Garty H, Caplan SR (1977) Light-dependent rubidium transport in intact Halobacterium halobium cells. Biochim Biophys Acta 459: 532–545

    Article  PubMed  CAS  Google Scholar 

  • Gerwert K, Souvignier G, Hess B (1990) Simultaneous monitoring of light-induced changes in protein side-group protonation, chromophore isomerization, and backbone motion of bacteriorhodopsin by time-resolved Fourier-transform infrared spectroscopy. Proc Natl Acad Sci USA 87: 9774–9778

    Article  PubMed  CAS  Google Scholar 

  • Glaeser RM, Baldwin JM, Ceska TA, Henderson R (1986) Electron diffraction analysis of the M412 intermediate of bacteriorhodopsin. Biophys J 50: 913–920

    Article  PubMed  CAS  Google Scholar 

  • Gulik-Krzywicki T, Seigneuret M, Rigaud J-L (1987) Monomer-oligomer equilibrium of bacteriorhodopsin in reconstituted proteoliposomes. A freeze-fracture electron microscope study. J Biol Chem 262: 15580–15588

    PubMed  CAS  Google Scholar 

  • Hallberg Gradin C, Colmsjö A (1989) Four different b-type cytochromes in the halophilic archaebacterium, Halobacterium halobium. Arch Biochem Biophys 272: 130–136

    Article  PubMed  CAS  Google Scholar 

  • Harbison GS, Smith SO, Pardoen JA, Winkel C, Lugtenburg J, Herzfeld J, Mathies RA, Griffin RG (1984) Dark-adapted bacteriorhodopsin contains 13-cis, 15 -syn and all-trans, 15 -anti retinal Schiff bases. Proc Natl Acad Sci USA 81: 1706–1709

    Article  PubMed  CAS  Google Scholar 

  • Hasselbacher CA, Spudich JL, Dewey TG (1988) Circular dichroism of halorhodopsin: comparison with bacteriorhodopsin and sensory rhodopsin I. Biochemistry 27: 2540–2546

    Article  PubMed  CAS  Google Scholar 

  • Hayward SB, Grano DA, Glaeser RM, Fisher KA (1978) Molecular orientation of bacteriorhodopsin within the purple membrane of Halobacterium halobium. Proc Natl Acad Sci USA 75: 4320–4324

    Article  PubMed  CAS  Google Scholar 

  • Hazemoto N, Kamo N, Terayama Y, Kobatake Y, Tsuda M (1983) Photochemistry of two rhodopsinlike pigments in bacteriorhodopsin-free mutant of Halobacterium halobium. Biophys J 44: 59–64

    Article  PubMed  CAS  Google Scholar 

  • Hegemann P, Oesterhelt D, Steiner M (1985a) The photocycle of the chloride pump halorhodopsin. I. Azide catalyzed deprotonation of the chromophore is a side reaction of photocycle intermediates inactivating the pump. EMBO J 4: 2347–2350

    PubMed  CAS  Google Scholar 

  • Hegemann P, Oesterhelt D, Bamberg E (1985b) The transport activity of the light-driven chloride pump halorhodopsin is regulated by green and blue light. Biochim Biophys Acta 819: 195–205

    Article  CAS  Google Scholar 

  • Helgerson SL, Stoeckenius W (1985) Transient proton inflows during illumination of anaerobic Halobacterium halobium cells. Arch Biochem Biophys 241: 616–627

    Article  PubMed  CAS  Google Scholar 

  • Henderson R, Unwin PN (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257: 28–32

    Article  PubMed  CAS  Google Scholar 

  • Henderson R, Jubb JS, Whytock S (1978) Specific labelling of the protein and lipid on the extracellular surface of purple membrane. J Mol Biol 123: 259–274

    Article  PubMed  CAS  Google Scholar 

  • Henderson R, Baldwin JM, Ceska TA, Zemlin F, Beckmann E, Downing KH (1990) Model for the structure of bacteriorhodopsin based on high-resolution electron cryo-microscopy. J Mol Biol 213: 899–929

    Article  PubMed  CAS  Google Scholar 

  • Hochstein LI, Kristjansson H, Altekar W (1987) The purification and subunit structure of a membrane-bound ATPase from the archaebacterium Halobacterium saccharovorum. Biochem Biophys Res Commun 147: 295–300

    Article  PubMed  CAS  Google Scholar 

  • Ihara K, Mukohata Y (1991) The ATP synthase of Halobacterium salinarium (halobium) is an archaebacterial type as revealed from the amino acid sequences of its two major subunits. Arch Biochem Biophys 286: 111–116

    Article  PubMed  CAS  Google Scholar 

  • Kamo N, Hazemoto N, Kobatake Y, Mukohata Y (1985) Light and dark adaptation of halorhodopsin. Arch Biochem Biophys 238: 90–96

    Article  PubMed  CAS  Google Scholar 

  • Keszthelyi L, Száraz S, Dér A, Stoeckenius W (1990) Bacteriorhodopsin and halorhodopsin: multiple ion pumps. Biochim Biophys Acta Bio-Energetics 1018: 260–262

    Article  CAS  Google Scholar 

  • Kobayashi T, Ohtani H, Iwai J-I, Ikegami A, Uchiki H (1983) Effect of pH on the photoreaction cycles of bacteriorhodopsin. FEBS Lett 162: 197–200

    Article  CAS  Google Scholar 

  • Koch MHJ, Dencher NA, Oesterhelt D, Plöhn H-J, Rapp G, Büldt G (1991) Time-resolved X-ray diffraction study of structural changes associated with the photocycle of bacteriorhodopsin. EMBO J 10: 521–526

    PubMed  CAS  Google Scholar 

  • Konishi T, Murakami N (1988) Delta-psi-dependent gating of Na+/H+ exchange in Halo-bacterium halobium: a protonmotive force driven Na+ pump. FEBS Lett 226: 270–274

    Article  Google Scholar 

  • Konishi T, Murakami N (1990) Solubilization and functional reconstitution of the DCCD-sensitive Na+/H+-antiporter from Halobacterium halobium. Bioehem Biophys Res Com- mun 170: 1339–1345

    Article  CAS  Google Scholar 

  • Lanyi JK (1968) Studies of the electron transport chain of extremely halophilic bacteria. I. Spectrophotometry identification of the cytochromes of Halobacterium cutirubrum. Arch Bioehem Biophys 128: 716–724

    Article  CAS  Google Scholar 

  • Lanyi JK (1984) Light-dependent trans to cis isomerization of the retinal in halorhodopsin. FEBS Lett 175: 337–342

    Article  PubMed  CAS  Google Scholar 

  • Lanyi JK (1986a) Photochromism of halorhodopsin. cis/trans Isomerization of the retinal around the 13–14 double bond. J Biol Chem 261: 14025–14030

    PubMed  CAS  Google Scholar 

  • Lanyi, JK (1986b) Mechanism of base-catalyzed Schiff-base deprotonation in halorhodopsin. Biochemistry 25: 6706–6711

    Article  PubMed  CAS  Google Scholar 

  • Lanyi JK (1990) Halorhodopsin: a light-driven electrogenic chloride transport system. Physiol Rev 70: 319–330

    PubMed  CAS  Google Scholar 

  • Lanyi JK, MacDonald RE (1976) Existence of electrogenic hydrogen ion/sodium ion antiport in Halobacterium halobium cell envelope vesicles. Biochemistry 15: 4608–4614

    Article  PubMed  CAS  Google Scholar 

  • Lanyi JK, Vodyanoy V (1986) Flash spectroscopic studies of the kinetics of the halorhodopsin photocycle. Biochemistry 25: 1465–1470

    Article  PubMed  CAS  Google Scholar 

  • Lanyi JK, Schobert B (1983) Effects of chloride and pH on the chromophore and photocycling of halorhodopsin. Biochemistry 22: 2763–2769

    Article  CAS  Google Scholar 

  • Lanyi JK, Silverman MP (1979) Gating effects in H. halobium membrane transport. J Biol Chem 254: 4750–4755

    PubMed  CAS  Google Scholar 

  • Lanyi JK, Zimányi L, Nikanishi K, Derguini F, Okabe M, Honig B (1988) Chromo-phore/protein and chromophore/anion interactions in halorhodopsin. Biophys J 53: 185–191

    Article  PubMed  CAS  Google Scholar 

  • Lanyi JK, Duschl A, Váró G, Zimányi L (1990a) Anion binding to the chloride pump, halorhodopsin, and its implications for the transport mechanism. FEBS Lett 265: 1–6

    Article  PubMed  CAS  Google Scholar 

  • Lanyi JK, Duschl A, Hatfield GW, May KM, Oesterhelt D (1990b) The primary structure of a halorhodopsin from Natronobacterium pharaonis: structural, functional and evolutionary implications for bacterial rhodopsins and halorhodopsins. J Biol Chem 265: 1253–1260

    PubMed  CAS  Google Scholar 

  • Maeda A, Iwasa T, Yoshizawa T (1977) Isomeric composition of retinal chromophore in dark-adapted bacteriorhodopsin. J Bioehem (Tokyo) 82: 1599–1604

    CAS  Google Scholar 

  • Maeda A, Ogurusu T, Yoshizawa T, Kitagawa T (1985) Resonance Raman study on binding of chloride to the chromophore of halorhodopsin. Biochemistry 24: 2517–2521

    Article  CAS  Google Scholar 

  • Marwan W, Alam M, Oesterhelt D (1991) Rotation and switching of the flagellar motor assembly in Halobacterium halobium. J Bacteriol 173: 1971–1977

    PubMed  CAS  Google Scholar 

  • Mathies RA, Lin SW, Ames JB, Pollard WT (1991) From femtoseconds to biology: Mechanism of bacteriorhodopsin’s light-driven proton pump. Annu Rev Biophys Biophys Chem 20: 491–518

    Article  PubMed  CAS  Google Scholar 

  • Mehlhorn RJ, Schobert B, Packer L, Lanyi JK (1985) ESR studies of light-dependent volume changes in cell envelope vesicles from Halobacterium halobium. Biochim Biophys Acta 809: 66–73

    Article  CAS  Google Scholar 

  • Michel H, Oesterhelt D (1980) Electrochemical proton gradient across the cell membrane of Halobacterium halobium: comparison of the light-induced increase with the increase of intracellular adenosine triphosphate under steady-state illumination. Biochemistry 19: 4615–4619

    Article  PubMed  CAS  Google Scholar 

  • Moore TA, Edgerton ME, Parr G, Greenwood C, Perham RN (1978) Studies of an acid-induced species of purple membrane from Halobacterium halobium. Bioehem J 171: 469–476

    CAS  Google Scholar 

  • Mowery PC, Lozier RH, Chae Q, Tseng YW, Taylor M, Stoeckenius W (1979) Effect of acid pH on the absorption spectra and photoreactions of bacteriorhodopsin. Biochemistry 18: 4100–4107

    Article  PubMed  CAS  Google Scholar 

  • Mukohata Y, Yoshida M (1987a) Activation and inhibition of ATP synthesis in cell envelope vesicles of Halobacterium halobium. J Biochem (Tokyo) 101: 311–318

    CAS  Google Scholar 

  • Mukohata Y, Yoshida M (1987b) The H+ translocating ATP synthase in Halobacterium halobium differs from F0F1-ATPase/synthase. J Biochem (Tokyo) 102: 797–802

    CAS  Google Scholar 

  • Mukohata Y, Isoyama M, Fuke A (1986) ATP synthesis in cell envelope vesicles of Halobacterium halobium driven by membrane potential and/or base-acid transition. J Biochem (Tokyo) 99: 1–8

    CAS  Google Scholar 

  • Nagle JF, Mille M (1981) Molecular models of proton pumps. J Chem Phys 74: 1367–1372

    Article  CAS  Google Scholar 

  • Nanba T, Mukohata Y (1987) A membrane-bound ATPase from Halobacterium halobium: purification and characterization. J Biochem (Tokyo) 102: 591–598

    CAS  Google Scholar 

  • Oesterhelt D, Tittor J (1989) Two pumps, one principle: light-driven ion transport in halobacteria. TIBS 14: 57–61

    PubMed  CAS  Google Scholar 

  • Oesterhelt D, Hegemann P, Tittor J (1985) The photocycle of the chloride pump halorhodopsin. II. Quantum yields and a kinetic model. EMBO J 4: 2351–2356

    PubMed  CAS  Google Scholar 

  • Oesterhelt D, Hegemann P, Tavan P, Schulten K (1986) Trans-eis isomerization of retinal and a mechanism for ion translocation in halorhodopsin. Eur Biophys J 14: 123–129

    Article  CAS  Google Scholar 

  • Oesterhelt D, Tittor J, Bamberg E (1992) A unifying concept for ion translocation by retinal proteins. J Bioenerg Biomembr 24: 181–191

    Article  PubMed  CAS  Google Scholar 

  • Ogurusu T, Maeda A, Sasaki N, Yoshizawa T (1982) Effects of chloride on the absorption spectrum and photoreactions of halorhodopsin. Biochim Biophys Acta 682: 446–451

    Article  CAS  Google Scholar 

  • Ogurusu T, Maeda A, Yoshizawa T (1984) Absorption spectral properties of purified halorhodopsin. J Biochem 95: 1073–1082

    PubMed  CAS  Google Scholar 

  • Ormos P (1991) Infrared spectroscopic demonstration of a conformational change in bacterio-rhodopsin involved in proton pumping. Proc Natl Acad Sci USA 88: 473–477

    Article  PubMed  CAS  Google Scholar 

  • Pande C, Lanyi JK, Callender RH (1989) Effects of various anions on the Raman spectrum of halorhodopsin. Biophys J 55: 425–431

    Article  PubMed  CAS  Google Scholar 

  • Renthal R, Shuler K, Regalado R (1990) Control of bacteriorhodopsin color by chloride at low pH. Significance for the proton pump mechanism. Biochim Biophys Acta Bio-Energetics 1016: 378–384

    Article  CAS  Google Scholar 

  • Rothschild KJ, Bousche O, Braiman MS, Hasselbacher CA, Spudich JL (1988) Fourier transform infrared study of the halorhodopsin chloride pump. Biochemistry 27: 2420–2424

    Article  PubMed  CAS  Google Scholar 

  • Schegk ES, Oesterhelt D (1988) Isolation of a prokaryotic photoreceptor: sensory rhodopsin from halobacteria. EMBO J 7: 2925–2933

    PubMed  CAS  Google Scholar 

  • Scherrer P, Stoeckenius W, Mathew MK, Sperling W (1987) Isomer ratio in dark-adapted bacteriorhodopsin. In: Ebrey TG, Frauenfelder H, Honig B, Nakanishi K (eds) Biophysical studies of retinal proteins Urbana-Champaign. University of Illinois Press, pp 206–211

    Google Scholar 

  • Schobert B (1991) Fi-like properties of an ATPase from the archaebacterium Halobacterium saccharovorum. J Biol Chem 266: 8008–8014

    PubMed  CAS  Google Scholar 

  • Schobert B, Lanyi JK (1982) Halorhodopsin is a light-driven chloride pump. J Biol Chem 257: 10306–10313

    PubMed  CAS  Google Scholar 

  • Schobert B, Lanyi JK (1986) Electrostatic interaction between anions bound to site I and the Schiff base of halorhodopsin. Biochemistry 25: 4163–4167

    Article  PubMed  CAS  Google Scholar 

  • Schobert B, Lanyi JK, Cragoe EJ Jr (1983) Evidence for a halide binding site in halorhodopsin. J Biol Chem 258: 15158–15164

    PubMed  CAS  Google Scholar 

  • Schobert B, Lanyi JK, Oesterhelt D (1986) Effects of anion binding on the deprotonation reactions of halorhodopsin. J Biol chem 261: 2690–2696

    PubMed  CAS  Google Scholar 

  • Schobert B, Lanyi JK, Oesterhelt D (1988) Structure and orientation of halorhodopsin in the membrane: a proteolytic fragmentation study. EMBO J 7: 905–911

    PubMed  CAS  Google Scholar 

  • Schulten K, Schulten Z, Tavan P (1984) An isomerization model for the pump cycle of bacteriorhodopsin. In: Bolis A, Helmreich H, Passow H (eds) Information and energy transduction in biological membranes. Alan R. Liss, New York, pp 113–131

    Google Scholar 

  • Shand RF, Betlach MC (1991) Expression of the bop gene cluster of Halobacterium halobium is induced by low oxygen tension and by light. J Bacteriol 173: 4692–4699

    PubMed  CAS  Google Scholar 

  • Smith SO, Pardoen JA, Mullder PPJ, Curry B, Lugtenburg J, Mathies RA (1983) Chromo-phore structure in bacteriorhodopsin’s O photointermediate. Biochemistry 22: 6141–6148

    Article  CAS  Google Scholar 

  • Smith SO, Marvin MJ, Bogomolni RA, Mathies RA (1984) Structure of the retinal chromo-phore in the hR578 form of halorhodopsin. J Biol Chem 259: 12326–12329

    PubMed  CAS  Google Scholar 

  • Sperling W, Carl P, Rafferty CN, Dencher NA (1977) Photochemistry and dark equilibrium of retinal isomers and bacteriorhodopsin isomers. Biophys Struct Mech 3: 79–94

    Article  PubMed  CAS  Google Scholar 

  • Spudich JL, Bogomolni RA (1988) Sensory rhodopsins of halobacteria. Annu Rev Biophys Biophys Chem 17: 193–215

    Article  PubMed  CAS  Google Scholar 

  • Stan-Lotter H, Hochstein LI (1989) A comparison of an ATPase from the archaebacterium Halobacterium saccharovorum with the F1 moiety from the Escherichia coli ATP synthase. Eur J Biochem 179: 155–160

    Article  PubMed  CAS  Google Scholar 

  • Stan-Lotter H, Bowman EJ, Hochstein LI (1991) Relationship of the membrane ATPase from Halobacterium saccharovorum to vacuolar ATPases. Arch Biochem Biophys 284: 116–119

    Article  PubMed  CAS  Google Scholar 

  • Steiner M, Oesterhelt D (1983) Isolation and properties of the native chromoprotein halo-rhodopsin. EMBO J 2: 1379–1385

    PubMed  CAS  Google Scholar 

  • Steiner M, Oesterhelt D, Ariki M, Lanyi JK (1984) Halide binding by the purified halorhodop-sin chromoprotein. I. Effects on the chromophore. J Biol Chem 259: 2179–2184

    PubMed  CAS  Google Scholar 

  • Stoeckenius W, Bogomolni RA (1982) Bacteriorhodopsin and related pigments of halobacteria. Annu Rev Biochem 51: 587–616

    Article  PubMed  CAS  Google Scholar 

  • Subramaniam S, Marti T, Khorana HG (1990) Protonation state of asp(glu)-85 regulates the purple-to-blue transition in bacteriorhodopsin mutants arg-82→ala-and asp-85→glu; the blue form is inactive in proton translocation. Proc Natl Acad Sci USA 87: 1013–1017

    Article  PubMed  CAS  Google Scholar 

  • Sugiyama Y, Mukohata Y (1984) Isolation and characterization of halorhodopsin from Halobacterium halobium. J Biochem 96: 413–420

    PubMed  CAS  Google Scholar 

  • Sumper M, Reitmeier H, Oesterhelt D (1976) Biosynthesis of the purple membrane of halobacteria. Angew Chem (Engl) 15: 187–194

    Article  CAS  Google Scholar 

  • Szundi I, Stoeckenius W (1988) Purple-to-blue transition of bacteriorhodopsin in a neutral lipid environment. Biophys J 54: 227–232

    Article  PubMed  CAS  Google Scholar 

  • Szundi I, Stoeckenius W (1989) Surface pH controls purple-to-blue transition of bacteriorhodopsin. A theoretical model of purple membrane surface. Biophys J 56: 369–383

    Article  PubMed  CAS  Google Scholar 

  • Taylor ME, Bogomolni RA, Weber HJ (1983) Purification of photochemically active halorhodopsin. Proc Natl Acad Sci USA 80: 6172–6176

    Article  PubMed  CAS  Google Scholar 

  • Tittor J, Oesterhelt D, Maurer R, Desel H, Uhl R (1987) The photochemical cycle of halorhodopsin: absolute spectra of intermediates obtained by flash photolysis and fast difference spectra measurements. Biophys J 52: 999–1006

    Article  PubMed  CAS  Google Scholar 

  • Tsuji K, Rosenheck K (1979) The low pH species of bacteriorhodopsin. Structure and proton pump activity. FEBS Lett 98: 368–372

    Article  PubMed  CAS  Google Scholar 

  • Váró G, Lanyi JK (1989) Photoreactions of bacteriorhodopsin at acid pH. Biophys J 56: 1143–1151

    Article  PubMed  Google Scholar 

  • Váró G, Lanyi JK (1991a) Kinetic and spectroscopic evidence for an irreversible step between deprotonation and reprotonation of the Schiff base in the bacteriorhodopsin photocycle. Biochemistry 30: 5008–5015

    Article  PubMed  Google Scholar 

  • Váró G, Lanyi JK (1991b) Thermodynamics and energy coupling in the bacteriorhodopsin photocycle. Biochemistry 30: 5016–5022

    Article  PubMed  Google Scholar 

  • Váró G, Zimányi L, Chang M, Ni B, Needleman R, Lanyi JK (1992) A residue substitution near the ß-ionone ring of the retinal affects the M substates of bacteriorhodopsin. Biophys J 61: 820–826

    Article  PubMed  Google Scholar 

  • Wagner G, Hartmann R, Oesterhelt D (1978) Potassium uniport and ATP synthesis in Halobacterium halobium. Eur J Biochem 89: 169–179

    Article  PubMed  CAS  Google Scholar 

  • Zimányi L, Lanyi JK (1987) Iso-halorhodopsin: a stable 9 -eis retinal-containing photoproduct of halorhodopsin. Biophys J 52: 1007–1013

    Article  PubMed  Google Scholar 

  • Zimányi L, Lanyi JK (1989a) Low temperature photoreactions of halorhodopsin. 2. Description of the photocycle and its intermediates. Biochemistry 28: 1662–1666

    Article  PubMed  Google Scholar 

  • Zimányi L, Lanyi JK (1989b) Transient spectroscopy of bacterial rhodopsins with optical multichannel analyzer. 2. Effects of anions on the halorhodopsin photocycle. Biochemistry 28: 5172–5178

    Article  PubMed  Google Scholar 

  • Zimányi L, Keszthelyi L, Lanyi JK (1989) Transient spectroscopy of bacterial rhodopsins with optical multichannel analyser. 1. Comparison of the photocycles of bacteriorhodopsin and halorhodopsin. Biochemistry 28: 5165–5172

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lanyi, J.K. (1994). Halorhodopsin: A Prokaryotic Light-Driven Active Chloride Transport System. In: Gerencser, G.A. (eds) Electrogenic Cl Transporters in Biological Membranes. Advances in Comparative and Environmental Physiology, vol 19. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78261-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78261-9_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78263-3

  • Online ISBN: 978-3-642-78261-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics