Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 184))

Abstract

Important insights into the mechanisms of transendothelial migration of neutrophils have been gained through several technical approaches in vitro (Smith 1992). Chemotactic gradients across confluent endothelial cell (EC) monolayers in vitro promote transmigration of neutrophils (Taylor et al. 1981; Furie et al. 1984). Rarely >40% of the neutrophils contacting the monolayer migrate (Furie etal. 1984). Stimulation of confluent EC monolayers in vitro for 3h with interleukin-1 β (IL-1β), tumor necrosis factor-α (TNF-α) or endotoxin (LPS) also promotes rapid transmigration of previously unstimulated neutrophils (Smith etal. 1988). This occurs with EC monolayers grown on polycarbonate filters (Moser et al. 1989; Kuijpers etal. 1992a), human amniotic membrane (Furie and McHugh 1989) or type I collagen gels (Huber etal. 1991; Luscinskas etal. 1991). Cytokine-stimulated ECs apparently produce all of the factors necessary to induce transendothelial migration of not only neutrophils, but eosinophils (Ebisawa et al. 1992), monocytes (Hakkert et al. 1991), and subsets of T cells (Oppenheimer-Marks etal. 1990; Van Epps etal. 1989). When observed directly under phase contrast optics, spherical neutrophils settling onto previously activated EC monolayers are seen to become motile within 1–2min after contacting the apical surface of the monolayer (Smith etal. 1988; Luscinskas etal. 1991), and within 5–10min a high percentage (50%–90%) migrate beneath the monolayer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  • Abbassi O, Lane CL, Krater SS, Kishimoto TK, Anderson DC, Mclntire LV, Smith CW (1991) Canine neutrophil margination mediated by lectin adhesion molecule-1 (LECAM-1) in vitro. J Immunol 147: 2107–2115

    PubMed  CAS  Google Scholar 

  • Abbassi O, Kishimoto TK, Mclntire LV, Anderson DC, Smith CW (to be published) E-selection supports neutrophil rolling in vitro under conditions of flow. J Clin Invest

    Google Scholar 

  • Anderson DC, Springer TA (1987) Leukocyte adhesion deficiency: An inherited defect in the Mac-1, LFA-1 and p150, 95 glycoproteins. Annu Rev Med 38: 175–194

    CAS  Google Scholar 

  • Anderson DC, Miller LJ, Schmalstieg FC, Rothlein R, Springer TA (1986) Contributions of the Mac-1 glycoprotein family to adherence-dependent granulocyte functions: structure- function assessments employing subunit-specific monoclonal antibodies. J Immunol 137: 15–27

    PubMed  CAS  Google Scholar 

  • Anderson DC, Rothlein R, Marlin SD, Krater SS, Smith CW (1990) Impaired Transendothelial migration by neonatal neutrophils: abnormalities of Mac-1 (CD11 b/CD18)-dependent adherence reactions. Blood 78: 2613–2621

    Google Scholar 

  • Arfors KE, Lundberg C, Lindbom L, Lundberg K, Beatty PG, Harlan JM (1987) A monoclonal antibody to the membrane glycoprotein complex CD18 inhibits polymorphonuclear leukocyte accumulation and plasma leakage in vivo. Blood 69: 338–340

    PubMed  CAS  Google Scholar 

  • Beesley JE, Pearson JD, Hutchings A, Carleton JS, Gordon JL (1979) Granulocyte migration through endothelium in culture. J Cell Sci 38: 237–248

    PubMed  CAS  Google Scholar 

  • Diamond MS, Staunton DE, de Fougerolles AR, Stacker SA, Garcia-Aguilar J, Hibbs ML, Springer TA (1990) ICAM-1 (CD54): a counter-receptor for Mac-1 (CD11 b/CD18). J Cell Biol 111: 3129–3139

    CAS  Google Scholar 

  • Dransfield I, Cabanas C, Craig A, Hogg N (1992) Divalent cation regulation of the function of the leukocyte integrin LFA-1. J Cell Biol 116: 219–226

    Article  PubMed  CAS  Google Scholar 

  • Dustin ML, Springer TA (1989) T-Cell receptor cross-linking transiently stimulates adhesiveness through LFA-1. Nature 341: 619–624

    Article  PubMed  CAS  Google Scholar 

  • Ebisawa M, Bochner B, Georas S, Schleimer R (1992) Eosinophil transendothelial migration induced by cytokines. J Immunol 149: 4021–4028

    PubMed  CAS  Google Scholar 

  • Entman ML, Youker K, Shoji T, Taylor AA, Shappell SB, Smith CW (1991) Neutrophil-induced oxidative injury of cardiac myocytes is a compartmented system requiring CD11/CD18– ICAM-1 adherence. Clin Res 39: 159A

    Google Scholar 

  • Francis JW, Todd RF, Boxer LA, Petty HR (1989) Sequential expression of cell surface C3bi receptors during neutrophil locomotion. J Cell Physiol 140: 519–523

    Article  PubMed  CAS  Google Scholar 

  • Furie MB, McHugh DD (199) Migration of neutrophils across endothelial monolayers is stimulated by treatment of the monolayers with interleukin-1 or tumor necrosis factor-alpha. J Immunol 143: 3309–3317

    Google Scholar 

  • Furie MB, Cramer EV, Naprstek BL, Silverstein SC (1984) Cultured endothelial cell monolayers that restrict the transendothelial passage of macromolecules and electrical current. J Cell Biol 98: 1033–1041

    Article  PubMed  CAS  Google Scholar 

  • Furie MB, Naprstek BL, Silverstein SC (1987) Migration of neutrophils across monolayers of cultured microvascular endothelial cells. J Cell Sei 88: 161–175

    CAS  Google Scholar 

  • Furie MB, Tancinco MCA, Smith CW (1991) Monoclonal antibodies to leukocyte integrins CD11 a/CD18 and CD11b/CD18 or intercellular adhesion molecule-1 (ICAM-1) inhibit chemoattractant-stimulated neutrophil transendothelial migration in vitro. Blood 78: 2089–2097

    PubMed  CAS  Google Scholar 

  • Geng JG, Bevilacqua MP, Moore KL, Mclntyre TM, Prescott SM, Kim JM, Blis GA, Zimmerman GA, McEver RP (1990) Rapid neutrophil adhesion to activated endothelium mediated by GMP-140. Nature 343: 757–760

    Article  PubMed  CAS  Google Scholar 

  • Gimbrone MA Jr, Obin MS, Brock AF, Luis EA, Hass PE, Hebert CA, Yip YK, Leung DW, Lowe DG, Kohr WJ, Darbonne WC, Bechtol KB, Baker JB (1989) Endothelial interleukin-8: A novel inhibitor of leukocyte-endothelial interactions. Science 246: 1601–1603

    Google Scholar 

  • Grant L (1974) The sticking and emigration of white blood cells in inflammation. In: Zweifach BW, Grant L, McCluskey RT (ds) The inflammatory process, 2nd edn. Academic, New York, pp 205–221

    Google Scholar 

  • Hakkert BC, KuijpersTW, Leeuwenberg JFM, van Mourik JA, Roos D (1991) Neutrophil and monocyte adherence to and migration across monolayers of cytokine-activated endothelial cells: the contribution of CD18, ELAM-1, and VLA-4. Blood 78: 2721–2726

    Google Scholar 

  • Harlan JM, Killen PD, Senecal FM, Schwartz BR, Yee EK, Taylor RF, Beatty PG, Price TH, Ochs HD (1985) The role of neutrophil membrane glycoprotein GP-150 in neutrophil adherence to endothelium in vitro. Blood 66: 167–178

    PubMed  CAS  Google Scholar 

  • Huber AR, Weiss SJ (1989) Disruption of the subendothelial basement membrane during neutrophil diapedesis in an in vitro construct of a blood vessel wall. J Clin Invest 83: 1122–1136

    Article  PubMed  CAS  Google Scholar 

  • Huber AR, Kunkel SL, Todd RF III, Weiss SJ (1991) Regulation of transendothelial neutrophil migration by endogenous interleukin-8. Science 254: 99–105

    Article  PubMed  CAS  Google Scholar 

  • Hughes B, Williams S, Shappell S, Robinson M, Smith C (1992a) CD11 b/CD18(Mac-1)- Dependent neutrophil(PMN) functions: apparent role for affinity modulations. J Leukoc Biol [Suppl] 3: 42

    Google Scholar 

  • Hughes BJ, Hollers JC, Crockett-Torabi E, Smith CW (1992b) Recruitment of CD11 b/CD18 to the neutrophil surface and adherence-dependent cell locomotion. J Clin Invest 90: 1687–1696

    Article  PubMed  CAS  Google Scholar 

  • Jones DA, Abbassi 0, Mclntire LV, McEver RP, Smith CW (1992) Neutrophil-endothelial adherence under conditions of flow: P-selectin supports leukocyte rolling. Circulation 86: 1–161

    Google Scholar 

  • Jones DH, Schmalstieg FC, Dempsey K, Krater SS, Nannen DD, Smith CW, Anderson DC (1990) Subcellular distribution and mobilization of Mac-1 (CD11b/CD18) in neonatal neutrophils. Blood 75: 488–498

    PubMed  CAS  Google Scholar 

  • KuijpersTW, Hakkert BC, Hoogerwerf M, Leeuwenbeg JFM, Roos D (1991) Role of endothelial leukocyte adhesion molecule-1 and platelet-activating factor in neutrophil adherence to IL-1 -prestimulated endothelial cells. Endothelial leukocyte adhesion molecule-1 -mediated CD18 activation. J Immunol 147: 1369–1376

    Google Scholar 

  • KuijpersTW, Hakkert BC, Hart MHL, Roos D (1992a) Neutrophil migration across monolayers of cytokine-prestimulated endothelial cells: a role for platelet-activating factor and IL-8. J Cell Biol 117: 565–572

    Article  Google Scholar 

  • Kuijpers TW, Hoogerwerf M, Kuijpers KC, Schwartz BR, Harlan JM (1992b) Cross-linking of sialophorin (CD43) induces neutrophil aggregation in a CD18–dependent and a CD18–independent way. J Immunol 149: 998–1003

    PubMed  CAS  Google Scholar 

  • Kuijpers TW, Hoogerwerf M, van der Laan L, Nagel G, van der Schoot C, Grunert F, Roos D (1992c) CD66 nonspecific cross-reacting antigens are involved in neutrophil adherence to cytokine-activated endothelial cells. J Cell Biol 118: 457–466

    Article  PubMed  CAS  Google Scholar 

  • Lawrence MB, Springer TA (1991) Leukocytes roll on a selectin at physiologic flow rates: distinction from and prerequisite for the adhession through integrins. Cell 65: 1–20

    Article  Google Scholar 

  • Lawrence MB, Smith CW, Eskin SG, Mclntire LV (1990) Effect of venous shear stress on CD18–mediated neutrophil adhesion to cultured endothelium. Blood 75: 227–237

    PubMed  CAS  Google Scholar 

  • Ley K, Gaehtgens P, Fennie C, Singer MS, Lasky LA, Rosen SD (1991) Lectin-like cell adhesion molecule 1 mediates leukocyte rolling in mesenteric venules in vivo. Blood 77: 2553–2555

    PubMed  CAS  Google Scholar 

  • Lo SK, Van Seventer Ga, Levin SM, Wright SD (1989) Two leukocyte receptors (CD11 a/CD18) mediate transient adhesion to endothelium by binding to different ligands. J Immunol 143: 3325–3329

    Google Scholar 

  • Lo SK, Lee S, Ramos RA, Lobb R, Rosa M, Chi-Rosso G, Wright SD (1991) Endothelial- leukocyte adhesion molecule 1 stimulates the adhesive activity of leukocyte integrin CR3 (CD11 b/CD18, Mac-1, alpha m beta 2) on human neutrophils. J Exp Med 173: 1493–1500

    Article  PubMed  CAS  Google Scholar 

  • Lorant DE, Patel KD, Mclntyre TM, McEver RP,Prescott SM, Zimmerman GA (1991) Coexpression of GMP-140 and PAF by endothelium stimulated by histamine or thrombin: a juxtacrine system for adhesion and activation of neutrophils. J Cell Biol 115: 223–234

    PubMed  CAS  Google Scholar 

  • Luscinskas FW, Cybulsky Ml, Kiely J-M, Peckins CS, Davis VM, Gimrone MA (1991) Cytokine-activated human endothelial monolayers support enhanced neutrophil transmigration via a mechanism involving both endothelial-leukocyte adhesion molecule-1 and intercellular adhesion molecule-1. J Immunol 146: 1617–1625

    PubMed  CAS  Google Scholar 

  • Luscinskas FW, Kiely J-M, Ding H, Obin MS, Hebert CA, Baker JB, Gimbrone MA Jr (1 992) In vitro inhibitory effect of IL-8 and other chemoattractants on neutrophil-endothelial adhesive interactions. J Immunol 149: 2163–2171

    Google Scholar 

  • Moser R, Schleiffenbaum B, Groscurth P, Fehr J (1989) Interleukin 1 and tumor necrosis factor stimulate human vascular endothelial cells to promote transendothelial neutrophil passage. J Clin Invest 83: 444–455

    Article  PubMed  CAS  Google Scholar 

  • Oppenheimer-Marks N, Davis LS, Lipsky PE (1990) Human T lymphocyte adhesion to endothelial cells and transendothelial migration. Alternation of receptor use relates to the activation status of both the T cell and the endothelial cell. J Immunol 145: 140–148

    Google Scholar 

  • Oppenheimer-Marks N, Davis LS, Bogue DT, Ramberg J, Lipsky PE (1991) Differential utilization of ICAM-1 and VCAM-1 during the adhesion and transendothelial migration of human T lymphocytes. J Immunol 147: 2913–2921

    PubMed  CAS  Google Scholar 

  • Picker LJ, Warnock RA, Burns AR, Doerschuk CM, Berg EL, Butcher EC (1991) The neutrophil selectin LECAM-1 presents carbohydrate ligands to the vascular selectins ELAM-1 and GMP-140. Cell 66: 921–933

    Article  PubMed  CAS  Google Scholar 

  • Robinson ML, Andrew D, Rosen H, Brown D, Ortlepp S, Stephens P, Butcher EC (1992) An antibody against the Leu-CAM beta chain (CD18) promotes both LFA-1 and CR3 dependent adhesion events. J Immunol 148: 1080–1085.

    PubMed  CAS  Google Scholar 

  • Rot A (1992) Endothelial cell binding of NAP-1/IL-8 role in neutrophil emigration. Immunol Today 13: 291–294

    Article  PubMed  CAS  Google Scholar 

  • Rot A (to be published) Neutrophil attractant/activation protein-1 (interleukin-8) induces in vitro neutrophil migration by haptotactic mechanism. Eur J Immunol

    Google Scholar 

  • Schmalstieg FC, Rudloff HE, Hillman GR, Anderson DC (1986) Two dimensional and three dimensional movement of human polymorphonuclear leukocytes: two fundamentally different mechanisms of location. J Leukoc Biol 40: 677–691

    PubMed  CAS  Google Scholar 

  • Simon SI, Chambers JD, Sklar LA (1990) Flow cytometric analysis and modeling of cell-cell adhesive interactions: the neutrophil as a model. J Cell Biol 111: 2747–2756

    Article  PubMed  CAS  Google Scholar 

  • Smith CW (1992) Transendothelial migration. In: Harlan JM, Liu DY (eds) Adhesion. Its role in inflammatory disease. Freeman, New York, pp 85–115

    Google Scholar 

  • Smith CW, Hollers JC (1980) Motility and adhesiveness in human neutrophils. Redistribution of chemotactic factor induced adhesion sites. J Clin Invest 65: 804–812

    Google Scholar 

  • Smith CW, Rothlein R, Hughes BJ, Mariscalco MM, Schmalstieg FC, Anderson DC (1988) Recognition of an endothelial determinant for CD18–dependent human neutrophil adherence and transendothelial migration. J Clin Invest 82: 1746–1756

    Article  PubMed  CAS  Google Scholar 

  • Smith CW, Marlin SD, Rothlein R, Toman C, Anderson DC (1989) Cooperative interactions of LFA-1 and Mac-1 with intercellular adhesion molecule-1 in facilitating adherence and transendothelial migration of human neutrophils in vitro. J Clin Invest 83: 2008–2017

    Article  PubMed  CAS  Google Scholar 

  • Smith CW, Kishimoto TK, Abbassi O, Hughs BJ, Rothlein R, Mclntire LV, Butcher E, Anderson DC (1991) Chemotactic factors regulate lectin adhesion molecule 1 (LECAM-1)-dependent neutrophil adhesion to cytokine-stimulated endothelial cells in vitro. J Clin Invest 87: 609–618

    Article  PubMed  CAS  Google Scholar 

  • Stocks SC, Kerr MA (1992) Stimulation of neutrophil adhesion by antibodies recognizing CD15 (Lex) and CD15-expressing carcinoembryonic antigen-related glycoprotein NCA-160. Biochem J 288: 23–27

    PubMed  CAS  Google Scholar 

  • Tanaka Y, Adams D, Hubscher S, Hirano H, Siebenlist U, Shaw S (to be published) Proteoglycan-immobilized MIP-1 Beta induces adhesion of T cells. Nature

    Google Scholar 

  • Taylor RF, Price TH, Schwartz SM; Dale DC (1981) Neutrophil-endothelial cell interactions on endothelial monolayers grown on micropore filters. J Clin Invest 67: 584–587

    Article  PubMed  CAS  Google Scholar 

  • Tonnesen MG, Anderson DC, Springer TA, Knedler A, Avdi N, Henson PM (1986) Mac-1 glycoprotein family mediates adherence of neutrophils to endothelial cells stimulated by leukotriene b4 and platelet activating factor. Fed Proc 45: 379a

    Google Scholar 

  • Van Epps DE, Potter J, Vachula M, Smith CW, Anderson DC (1989) Suppression of human lymphocyte chemotaxis and transendothelial migration by anti-LFA-1 antibody. J Immunol 143: 3207–3210

    PubMed  Google Scholar 

  • von Andrian UH, Hansell P, Chambers JD, Berger EM, Filho IT, Butcher EC, Arfors K-E (to be published) L-selectin function is required for beta-2 integrin-mediated neutrophil adhesion at physiologic shear rates in vivo. Am J Physiol

    Google Scholar 

  • Watson SR, Fennie C, Lasky LA (1991) Neutrophil influx into an inflammatory site inhibited by a soluble homing receptor-IgG chimaera. Nature 349: 164–167

    Article  PubMed  CAS  Google Scholar 

  • Worthen GS, Schwab B III, Elson EL, Downey GP (1989) Mechanics of stimulated neutrophils: Cells stiffening induces retention of capillaries. Science 245: 183–186

    Google Scholar 

  • Wright SD, Lo SK, Detmers PA (1989) Specificity and regulation of CD18-dependent adhesion. In: Springer TA, Anderson DC, Rothlein R, Rosenthal AS (eds) Leukocyte adhesion molecules: structure, function and regulation. Springer, Berlin Heidelberg New York, pp 190–207

    Google Scholar 

  • Zimmerman GA, Mclntyre TM, Mehra M, Prescott SM (1990) Endothelial cell-associated platelet-activating factor: A novel mechanism for signaling intercellular adhesion. J Cell Biol 110: 529–540

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin · Heidelberg

About this chapter

Cite this chapter

Smith, C.W. (1993). Transendothelial Migration. In: Dunon, D., Mackay, C.R., Imhof, B.A. (eds) Adhesion in Leukocyte Homing and Differentiation. Current Topics in Microbiology and Immunology, vol 184. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78253-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78253-4_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78255-8

  • Online ISBN: 978-3-642-78253-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics