Skip to main content

Coexistence of Infinitely Many Stable Solutions to Reaction Diffusion Systems in the Singular Limit

  • Chapter
Dynamics Reported

Part of the book series: Dynamics Reported ((DYNAMICS,volume 3))

Abstract

Recognition stems from realization of the separation boundary between two different physical or chemicalstates. In other words we can observe natural phenomena through the emergence and evolution of theinterface between these states as in solidification, combustion, chemical reaction, and biological patterns. The interface studied here results from the balance between two opposing tendencies: adiffusive effect and a (physical or chemical)separation kinetics built in the system. The former attempts to smooth out the inhomogeneity as in the heat equation, and the latter drives the system to one or the other pure state such as solid or liquid (see, for instance, Fife [19] for details). Turing’s contribution [58] is one of the pioneering works related to the onset of spatial patterns through a cooperative work of diffusion and separation kinetics. Besides the existence of these two tendencies, another key ingredient to produce interesting interfacial patterns is the differences of the strength of the above mixing and unmixing effects among species involved in the system. In fact, reaction diffusion systems for two componentsu and v, which are the main concern in this paper, can be classified formally as

  1. (i)

    There is a difference in the diffusion rates of u and v;

  2. (ii)

    There is a difference in the reaction rates of u and v;

  3. (ii)

    There are differences in the diffusion and reaction rates of u and v, i.e., a combination of (i) and (ii).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Alexander, R. Gardner and C. Jones, A topological invariant arising in the stability analysis of travelling waves, J. reine angew. Math.,410 (1990), 167–212.

    MathSciNet  MATH  Google Scholar 

  2. N. D. Alikakos, P. W. Bates, and G. Fusco, Slow motion for the Cahn- Hilliard equation in one space dimension, J. Differential Equations,90 (1991), 81–135.

    Article  MathSciNet  MATH  Google Scholar 

  3. L. Bronsard and R. V. Kohn, On the slowness of the phase boundary motion in one space dimension, Comm. Pure Appl. Math.,43 (1990), 983–997.

    MathSciNet  MATH  Google Scholar 

  4. L.Bronsard and R.V.Kohn, Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics, J. Diff., Eqns.,90 (1991) 211–237.

    Article  MathSciNet  MATH  Google Scholar 

  5. P. Brunovský and B. Fiedler, Connection orbits in scalar reaction diffusion equations, Dynamics Reported vol1 (1988), 57–90, Wiley.

    Google Scholar 

  6. G. Caginalp, An analysis of a phase field model of a free boundary, Arch. Rat. Mech. Anal.,92 (1986), 205–245.

    Article  MathSciNet  MATH  Google Scholar 

  7. G. Caginalp and Y. Nishiura, The existence of travelling waves for phase field equations and convergence to sharp interface models in the singular limit, Quarterly of Appl. Math.,49 (1) (1991), 147–162.

    MathSciNet  MATH  Google Scholar 

  8. J. Carr, M. E. Gurtin, and M. Slemrod, Structured phase transitions on a finite interval, Arch. Rat. Mech. Anal.,86 (1984), 317–351.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Carr and R. L. Pego, Metastable patterns in solutions ofut = ε2uxx —f(u), Comm. Pure Appl. Math.,42 (1989), 523–576.

    MathSciNet  MATH  Google Scholar 

  10. R. G. Casten and C. J. Holland, Instability results for reaction diffusion equations with Neumann boundary conditions, J. Diff. Eqns., 27 (1978), 266–273.

    Article  MathSciNet  MATH  Google Scholar 

  11. X. -Y. Chen, Dynamics of interfaces in reaction diffusion systems, Hiroshima Math. J.,21 (1991), 47–83.

    MATH  Google Scholar 

  12. Y. -G. Chen, Y. Giga, and S. Goto, Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations, J. Differential Geometry33 (1991), 749–786.

    MathSciNet  MATH  Google Scholar 

  13. S. -N. Chow, B. Deng, and D. Terman, The bifurcation of homoclinic and periodic orbits from two heteroclinic orbits, SIAM J. Math. Anal.,21 (1990), 179–204.

    MathSciNet  MATH  Google Scholar 

  14. B. Deng, The bifurcations of countable connections from a twisted heteroclinic loop, SIAM J. Math. Anal.22 (1991), 653–679.

    MATH  Google Scholar 

  15. L. C. Evans and J. Spruck, Motion of level sets by mean curvature, J. Differential Geometry33 (1991), 601 - 633.

    MathSciNet  Google Scholar 

  16. P. C. Fife, Boundary and interior transition layer phenomena for pairs of second order differential equations, J. Math. Anal.,54 (1976), 497–521.

    Article  MathSciNet  MATH  Google Scholar 

  17. P. C. Fife, Propagator-controller systems and chemical patterns, inNonequilibrium Dynamics in Chemical Systems, A. Pacault and C. Vidal, eds., Springer-Verlag (1984), 76–88.

    Google Scholar 

  18. P. C. Fife, Understanding the patterns in the BZ reagent, J. Statist. Phys.,39 (1985), 687–703.

    Article  MathSciNet  Google Scholar 

  19. P. C. Fife,Dynamics of Internal Layers and Diffusive Interfaces, CBMS-NSF Regional Conference Series in Applied Mathematics #53, SIAM, Philadelphia (1988).

    Google Scholar 

  20. P. C. Fife, Pattern dynamics for parabolic PDE’s, to appear in the Proc. of IMA Conference “Introduction to dynamical systems”, Sept. 1989.

    Google Scholar 

  21. P. C. Fife and W. M. Greenlee, Interior transition layers for elliptic boundary value problems with a small parameter, Russian Math. Surveys,29: 4 (1974), 103–131.

    Article  MathSciNet  MATH  Google Scholar 

  22. P. C. Fife and J. B. McLeod, The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Rat. Mech. Anal.,65 (1977), 335–361.

    Article  MathSciNet  MATH  Google Scholar 

  23. H. Fujii and Y. Hosono, Neumann layer phenomena in nonlinear diffusion systems,Recent Topics in Nonlinear PDE, M. Mimura and T. Nishida, Math. Studies, 98, North-Holland, Amsterdam (1983), 21–38.

    Google Scholar 

  24. H. Fujii, M. Mimura and Y. Nishiura, A picture of the global bifurcation diagram in ecological interacting and diffusing systems, Phisica5D (1982), 1–42.

    MathSciNet  Google Scholar 

  25. H. Fujii, Y. Nishiura and Y. Hosono, On the structure of multuple existence of stable stationary solutions in systems of reaction- diffusion equations, Patterns and Waves - Qualitative Analysis of Nonlinear Differential Equations, T. Nishida, M. Mimura and H. Fujii, Stud. Math. Appl.,18 (1986), 157–219.

    Google Scholar 

  26. G. Fusco and J. K. Hale, Slow-motion manifolds, dormant Instability, and singular perturbations, J. Dynamics and Diff. Eqns., 1 (1989), 75–94.

    Article  MathSciNet  MATH  Google Scholar 

  27. R. Gardner and C. K. R. T Jones, A stability index for steady state solutions of boundary value problems for parabolic systems, J. Diff. Eqns.,91 (1991), 181–203.

    Article  MathSciNet  MATH  Google Scholar 

  28. J. K. Hale and K. Sakamoto, Existence and stability of transition layers, Japan J. Appl. Math.,5 (1988), 367–405.

    MathSciNet  MATH  Google Scholar 

  29. D. Henry,Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics 840, Springer-Verlag, Berlin, New York, 1981.

    Google Scholar 

  30. D. Hilhorst, Y. Nishiura, and M. Mimura, A free boundary problem arising in some reacting-diffusing system, Proc. Roy. Soc. Edinburgh,118A (1991), 355–378.

    MathSciNet  MATH  Google Scholar 

  31. T. Ikeda and Y. Nishiura, Pattern selection for two breathers, SLAM Appl. Math., in press.

    Google Scholar 

  32. M. Ito, A remark on singular perturbation methods, Hiroshima Math. J.,14 (1985), 619–629.

    MATH  Google Scholar 

  33. J. P. Keener and J. J. Tyson, Spiral waves in the Belousov- Zhabotinsky reaction, Physica,21D (1986), 307–324.

    MathSciNet  MATH  Google Scholar 

  34. H. Kokubu, Homoclinic and heteroclinic bifurcation of vector fields, Japan J. Appl. Math.,5 (1987), 455–501.

    Google Scholar 

  35. H. Kokubu, Y. Nishiura, and H. Oka, Heteroclinic and homoclinic bifurcation in bistable reaction diffusion systems, J. Diff. Eqns.,86 (2) (1990), 260–341.

    Article  MathSciNet  MATH  Google Scholar 

  36. J. S. Langer, Instabilities and pattern formation in crystal growth, Review of Modern Physics,52 (1) (1980), 1–28.

    Article  Google Scholar 

  37. H. Matano, Asymptotic behavior and stability of solutions of semilinear diffusion equations, Publ. RIMS, Kyoto Univ.,15 (1979), 401–454.

    Google Scholar 

  38. H. Meinhardt,Models of biological pattern formation. Academic Press, 1982.

    Google Scholar 

  39. M. Mimura, M. Tabata, and Y. Hosono, Multiple solutions of two-point boundary value problems of Neumann type with a small parameter, SIAM J. Math. Anal.,11 (1980), 613–631.

    MathSciNet  MATH  Google Scholar 

  40. J. D. Murray,Mathematical Biology. Springer-Verlag, 1989.

    Google Scholar 

  41. Y. Nishiura, Global structure of bifurcating solutions of some reaction-diffusion systems, SIAM J. Math. Anal.,13 (1982), 555–593.

    MathSciNet  MATH  Google Scholar 

  42. Y. Nishiura, Singular limit approach to stability and bifurcation for bistable reaction diffusion systems. In “Proceeding of the Workshop on Nonlinear PDE’s, Provo, Utah, March 1987” (P. Bates and P. Fife,), Rocky Mountain J. Math.,21 (2) (1991), 727–767.

    Google Scholar 

  43. Y. Nishiura, Singular limit eigenvalue problem in higher dimensional space, Proceeding of International Symposium on Functional Differential Equations and Related Topics, Kyoto, Japan, 30 August - 2 September, T. Yoshizawa and J. Kato, World Scientific, 1991.

    Google Scholar 

  44. Y. Nishiura and H. Fujii, Stability of singularly perturbed solutions to systems of reaction diffusion equations, SIAM J. Math. Anal.,18 (1987), 1726–1770.

    MathSciNet  MATH  Google Scholar 

  45. Y. Nishiura and H. Fujii, SLEP method to the stability of singularly perturbed solutions with multiple internal transition layers in reaction-diffusion systems, Proc. NATO Workshop “Dynamics of Infinite Dimensional Systems”, J. Hale and S.N. Chow, NATO ASI SeriesF37 (1986), 211–230.

    Google Scholar 

  46. Y. Nishiura and M. Mimura, Layer oscillations in reaction- diffusion systems, SIAM J. Appl. Math.,49 (1989), 481–514.

    MathSciNet  MATH  Google Scholar 

  47. Y. Nishiura, M. Mimura, H. Ikeda, and H. Fujii, Singilar limit analysis of stability of travelling wave solutions in bistable reaction-diffusion systems, SIAM J. Math. Anal.,21 (1990), 85–122.

    MathSciNet  MATH  Google Scholar 

  48. Y. Nishiura and H. Suzuki, Coalescence,repulsion, and nonuniqueness for singular limit reaction diffusion systems, to appear in the Proceedings of the International Taniguchi Symposium on Nonlinear Partial Differential Equations and Applications, Katata, 23 August - 29 August, 1989 ( Eds. T.Nishida and M.Mimura).

    Google Scholar 

  49. Y. Nishiura and H. Suzuki, Stability of generic interface of reaction diffusion systems in higher space dimensions, in preparation.

    Google Scholar 

  50. Y. Nishiura and T. Tsujikawa, Instability of singularly perturbed Neumann layer solutions in reaction-diffusion systems, Hiroshima Math. J.,20 (1990), 297–329.

    MathSciNet  MATH  Google Scholar 

  51. T. Ohta and M. Mimura, Pattern dynamics in excitable reaction- diffusion media,Formation, Dynamics and Stabilities of Patterns, K. Kawasaki, M. Suzuki, and A. Onuki, 1, World Scientific, 1990.

    Google Scholar 

  52. T. Ohta, M. Mimura, and R. Kobayashi, Higher-dimensional localized pattern in excitable media, Physics 34D (1989), 115–144.

    MathSciNet  MATH  Google Scholar 

  53. P. Pelce (editor),Dynamics of curved fronts, Perspective in Physics, Academic Press, 1988.

    Google Scholar 

  54. J. Rinzel and D. Terman, Propagation phenomena in a bistable reaction-diffusion systems, SIAM J. Appl. Math., 42 (1982) 1111–1137.

    MathSciNet  MATH  Google Scholar 

  55. K. Sakamoto, Construction and stability analysis of transition layer solutions in reaction-diffusion systems, Tohoku Math. J.,42 (1990), 17–44.

    MathSciNet  MATH  Google Scholar 

  56. H. Suzuki, Y. Nishiura, and H. Ikeda, Stability of traveling waves and a relation between the Evans function and the SLEP equation, submitted for publication.

    Google Scholar 

  57. M. Taniguchi and Y. Nishiura, Instability of planar interfaces in reaction diffusion systems, SIAM Math. Anal., in press.

    Google Scholar 

  58. A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. Roy. Soc. Lond.,B237 (1952), 37–72.

    Article  Google Scholar 

  59. R. S. Varga,Matrix iterative analysis, Prentice-Hall, 1962.

    Google Scholar 

  60. J. H. Wilkinson,The algebraic eigenvalue problem, Oxford, Clarendon Press, 1965.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nishiura, Y. (1994). Coexistence of Infinitely Many Stable Solutions to Reaction Diffusion Systems in the Singular Limit. In: Jones, C.K.R.T., Kirchgraber, U., Walther, HO. (eds) Dynamics Reported. Dynamics Reported, vol 3. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78234-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78234-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78236-7

  • Online ISBN: 978-3-642-78234-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics