Skip to main content

Anoxic Injury of Central Myelinated Axons: Nonsynaptic Ionic Mechanisms

  • Conference paper
Book cover Cerebral Ischemia and Basic Mechanisms

Abstract

The pathophysiology of stroke and central nervous system (CNS) trauma can now be effectively studied at a molecular level. This research is concerned with understanding how cells in the brain, devoid of oxygen and/or metabolic substrates, are injured and ultimately destroyed. The reasonable presumption is that knowledge about the fundamental mechanisms of cell injury will yield clinically applicable insights relevant to how the brain may be protected during periods of disrupted perfusion or metabolism. This work can be subdivided into the study of how each of the major cellular compartments in the brain, i.e., neuronal cell bodies and dendrites, axons and glial cells, are injured by anoxia/ischemia. While great progress has been made in analyzing the mechanisms of neuronal injury in gray matter (GM) areas such as cortex, much less is known about how anoxia/ischemia damages glial cells and axons. We have been interested in the pathophysiology of CNS axonal injury and have developed a reliable model system for studying the basic mechanisms of injury to CNS-myelinated axons caused by anoxia (Stys et al. 1990a; Ransom et al. 1993). The nonsynaptic ionic mechanisms which are critical in the development of irreversible anoxic injury in white matter (WM) are the focus of this review.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ames A III, Li Y, Heher EC, Kimble CR (1992) Energy metabolism of rabbit retina as related to function: High cost of Na+ transport. J Neurosci 12: 840–853

    Google Scholar 

  • Benveniste H, Drejer J, Shousboe A, Diemer NH (1984) Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem 43: 1369–1374

    Article  PubMed  CAS  Google Scholar 

  • Blaustein MP (1988) Calcium transport and buffering in neurons. TINS 11: 438–443

    PubMed  CAS  Google Scholar 

  • Chesler M (1990) The regulation and modulation of pH in the nervous system. Prog Neurobiol 34: 401–427

    Article  PubMed  CAS  Google Scholar 

  • Choi DW (1988a) Glutamate neurotoxicity and diseases of the nervous system. Neuron 1:62–634

    Article  Google Scholar 

  • Choi DW (1988b) Calcium-mediated neurotoxicity: relationship to specific channel types and role in ischemic damage. Trends Neurosci 11: 465–469

    Article  PubMed  CAS  Google Scholar 

  • Connors BW, Ransom BR, Kunis DM, Gutnick MJ (1982) Activity-dependent K+ accumulation in the developing rat optic nerve. Science 216: 1341–1343

    Article  PubMed  CAS  Google Scholar 

  • Davis P, Ransom BR (1987) Anoxia and CNS white matter: in vitro studies using the rat optic nerve. Soc Neurosci Abstr 13: 1634

    Google Scholar 

  • Fisher CM (1979) Capsular infarcts: the underlying vascular lesions. Arch Neurol 36: 65–73

    PubMed  CAS  Google Scholar 

  • Foster RE, Connors BW, Waxman SG (1982) Rat optic nerve: electrophysiological, pharmacological and anatomical studies during development. Dev Brain Res 3: 371–386

    Article  Google Scholar 

  • Goldman SA, Pulsinelli WA, Clarke WY, Kraig RP, Plum F (1989) The effects of extracellular acidosis on neurons and glia in vitro. J Cereb Blood Flow Metab 9: 471–477

    Article  PubMed  CAS  Google Scholar 

  • Hansen AJ (1985) Effect of anoxia on ion distribution in the brain. Physiol Rev 65: 101–148

    PubMed  CAS  Google Scholar 

  • Hossmann KA, Sato K (1970) Recovery of neuronal function after prolonged cerebral ischemia. Science 168: 375–376

    Article  PubMed  CAS  Google Scholar 

  • Kass IS, Lipton P (1982) Mechanisms involved in irreversible anoxic damage to the in vitro rat hippocampal slice. J Physiol (Lond) 332: 459–472

    CAS  Google Scholar 

  • Kimelberg HK, Ransom BR (1986) Physiological and pathological aspects of astrocytic swelling. In: Fedoroff S, Vernadakis A (eds) Astrocytes, vol 3. Academic, Orlando, pp 129–166

    Google Scholar 

  • Kraig RP, Pulsinelli WA, Plum F (1985) Hydrogen ion buffering during complete brain ischemia. Brain Res 342: 281–190

    Article  PubMed  CAS  Google Scholar 

  • Kraig RP, Petito CK, Plum F, Pulsinelli WA (1987) Hydrogen ions kill brain at concentrations reached in ischemia. J Cereb Blood Flow Metab 7: 379–386

    Article  PubMed  CAS  Google Scholar 

  • Lagnado L, Cervetto L, McNaughton PA (1988) Ion transport by the Na-Ca exchanger in isolated rod outer segments. Proc Natl Acad Sci USA 85: 4548–4552

    Article  PubMed  CAS  Google Scholar 

  • Orrenius S, McConkey DJ, Jones DP, Nicotera P (1988) Ca2+-activated mechanisms in toxicity and programmed cell death. ISI Atlas of Science: Pharmacology 2: 319–324

    Google Scholar 

  • Paulson OB, Newman EA (1987) Does the release of potassium from astrocyte endfeet regulate cerebral blood flow? Science 237: 896–898

    Article  PubMed  CAS  Google Scholar 

  • Plum F (1983) What causes infarction in ischemic brain? Neurology 33: 222–233

    PubMed  CAS  Google Scholar 

  • Pulsinelli WA, Waldman S, Rawlinson D, Plum F (1982) Moderate hyperglycemia augments ischemic brain damage: a neuropathologic study in the rat. Neurology 32: 1239–1246

    PubMed  CAS  Google Scholar 

  • Ransom BR, Philbin DM (1992) Anoxia-induced extracellular ionic changes in CNS white matter: the roles of glial cells. Can J Physiol Pharmacol 70: 181–189

    Article  Google Scholar 

  • Ransom BR, Yamate CL, Connors BW (1985) Activity-dependent shrinkage of extracellular space in rat optic nerve: a developmental study. J Neurosci 5: 532–535

    PubMed  CAS  Google Scholar 

  • Ransom BR, Carlini WG, Connors BW (1986) Brain extracellular space: developmental studies in rat optic nerve. Ann NY Acad Sci 481: 87–105

    Article  PubMed  CAS  Google Scholar 

  • Ransom BR, Stys PK, Waxman SG (1990a) The pathophysiology of anoxic injury in CNS white matter. Stroke 21: [Suppl III] 52–57

    Article  Google Scholar 

  • Ransom BR, Waxman SG, Davis PK (1990b) Anoxic injury of CNS white matter: protective effect of ketamine. Neurology 40: 1399–1403

    PubMed  CAS  Google Scholar 

  • Ransom BR, Walz W, Davis PK, Carlini WG (1992) Anoxia-induced changes in extracellular K+ and pH in mammalian central white matter. J Cereb Blood Flow Metab 12: 593–602

    Article  PubMed  CAS  Google Scholar 

  • Ransom BR, Stys PK, Waxman SG (1993) Anoxic injury of central myelinated axons: ionic mechanisms and pharmacology. In: Waxman S (ed) Molecular and cellular approaches to the treatment of neurological disease. Raven, New York, pp 121–151

    Google Scholar 

  • Schanne FA, Kane AB, Young EE, Farber JL (1979) Calcium–dependence of toxic cell death: a final common pathway. Science 206: 700–702

    Article  PubMed  CAS  Google Scholar 

  • Schlaepfer WW (1977) Structural alterations of peripheral nerve induced by the calcium ionophore A23817. Brain Res 136: 1–9

    Article  PubMed  CAS  Google Scholar 

  • Schwartz EA, Tachibana M (1990) Electrophysiology of glutamate and sodium cotransport in a glial cell of the salamander retina. J Physiol (Lond) 426: 43–80

    CAS  Google Scholar 

  • Siesjö BK (1981) Cell damage in the brain: a speculative synthesis. J Cereb Blood Flow Metab 1: 155–185

    Article  PubMed  Google Scholar 

  • Siesjö BK, Wieloch T (1985) Brain injury: neurochemical aspects. In: Becker D, Povlishock JT (eds) Central nervous system trauma status report. NIH, NINCDS, Bethesda, pp 513–532

    Google Scholar 

  • Somjen GG, Aitken PG, Balestrino M, Herreras O, Kawasaki K (1990) Spreading depressionlike depolarization and selective vulnerability of neurons: a brief review. Stroke 21:111– 179—III–183

    Google Scholar 

  • Stafstrom CE, Schwindt PC, Chubb MC, Crill WE (1985) Properties of persistent sodium conductance and calcium conductance of layer V neurons from cat sensorimotor cortex. J Neurophys 53: 153–170

    CAS  Google Scholar 

  • Stys PK, Ransom BR, Waxman SG, Davis PK (1990a) The role of extracellular calcium in anoxic injury of mammalian white matter. Proc Natl Acad Sci USA 87: 4212–4216

    Article  PubMed  CAS  Google Scholar 

  • Stys PK, Ransom BR, Waxman SG (1990b) Effects of polyvalent cations and dihydropyridine calcium channel blockers on recovery of CNS white matter from anoxia. Neurosci Lett 115: 293–299

    Article  PubMed  CAS  Google Scholar 

  • Stys PK, Ransom BR, Waxman SG (1991a) Compound action potential of nerve recorded by suction electrode: a theoretical and experimental analysis. Brain Res 546: 18–32

    Article  PubMed  CAS  Google Scholar 

  • Stys PK, Waxman SG, Ransom BR (1991b) Na+-Ca2+ exchanger mediates Ca2+ influx during anoxia in mammalian CNS white matter. Ann Neurol 30: 375–380

    Article  PubMed  CAS  Google Scholar 

  • Stys PK, Waxman SG, Ransom BR (1992) Ionic mechanisms of anoxic injury in mammalian CNS white matter: role of Na+ channels and Na+-Ca2+ exchanger. J Neurosci 12: 430–439

    PubMed  CAS  Google Scholar 

  • Tang CM, Dichter M, Morad M (1990) Modulation of the N-methyl-D-aspartate channel by extracellular H+. Proc Natl Acad Sci USA 87: 6445–6449

    Article  PubMed  CAS  Google Scholar 

  • Taylor MD, Mellert TK, Parmentier JL, Eddy LJ (1985) Pharmacological protection of reoxygenation damage to in vitro brain slice tissue. Brain Res 347: 268–273

    Article  PubMed  CAS  Google Scholar 

  • Waxman SG, Ritchie JM (1985) Organization of ion channels in the myelinated nerve fiber. Science 228: 1502–1507

    Article  PubMed  CAS  Google Scholar 

  • Waxman SG, Ransom BR, Stys PK (1991) Non–synaptic mechanisms of Ca2+-mediated injury in CNS white matter. TINS 14: 461–468

    PubMed  CAS  Google Scholar 

  • Waxman SG, Black JA, Stys PK, Ransom BR (1992) Ultrastructural concomitants of anoxic injury and early post-anoxic recovery in rat optic nerve. Brain Res 574: 105–119

    Article  PubMed  CAS  Google Scholar 

  • Waxman SG, Black JA, Ransom BR, Stys PK (1993) Protection of the axonal cytoskeleton in anoxic optic nerve by decreased extracellular calcium. Brain Res (in press)

    Google Scholar 

  • Young W (1985) Blood flow, metabolic and neurophysiological mechanisms in spinal cord injury. In: Becker D, Povlishock JT (eds) Central nervous system trauma status report. NIH, NINCDS, Bethesda, pp 463–473

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ransom, B.R., Waxman, S.G., Stys, P.K. (1994). Anoxic Injury of Central Myelinated Axons: Nonsynaptic Ionic Mechanisms. In: Hartmann, A., Yatsu, F., Kuschinsky, W. (eds) Cerebral Ischemia and Basic Mechanisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78151-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78151-3_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78153-7

  • Online ISBN: 978-3-642-78151-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics