Skip to main content

Models of Neural Circuit Reorganization After Injury

  • Conference paper
Book cover Cerebral Ischemia and Basic Mechanisms

Abstract

While regeneration in the peripheral nervous system is a well-recognized phenomenon, it had long been believed that central nervous system (CNS) regeneration either did not occur, or was extremely limited. It remains true that regenerative sprouting, defined as the regrowth of a damaged axon, is commonly initiated, but is usually not successful in the adult mammalian CNS. Several factors contribute to this regenerative failure, including (a) a generally regressive reaction and reduced survival of adult CNS neurons after axonal injury [2]; (b) a nonsupportive environment for axonal growth [43]; and (c) the presence in the CNS of oligodendrocyte- and myelinassociated factors that are inhibitory to axonal growth [29]. Other contributory elements may include a down-regulation in the mature state of the production of molecules that promote neuron survival or neurite extension during development [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ard MD, Bunge RP (1988) Heparan sulfate and laminin immunoreactivity in cultured astrocytes: relationship to differentiation and neurite growth. J Neurosci 8: 2844–2858

    PubMed  CAS  Google Scholar 

  2. Barron KD (1989) Neuronal responses to axotomy: consequences and possibilities for rescue from permanent atrophy or cell death. In: Seil FJ (ed) Neural regeneration and transplantation. Liss, New York, pp 79–99 (Frontiers of clinical neuroscience, vol 6 )

    Google Scholar 

  3. Bernstein JJ, Wells MR, Bernstein ME (1978) Spinal cord regeneration: synaptic renewal and neurochemistry. In: Cotman CW (ed) Neuronal plasticity. Raven, New York, pp 49–71

    Google Scholar 

  4. Bjdrklund A (1991) Neural transplantation - an experimental tool with clinical possibilities. Trends Neurosci 14: 319–322

    Article  Google Scholar 

  5. Blank NK, Seil FJ (1983) Reorganization in granuloprival cerebellar cultures after transplantation of granule cells and glia. II. Ultrastructural studies. J Comp Neurol 214: 267–278

    Google Scholar 

  6. Blank NK, Seil FJ, Herndon RM (1982) An ultrastructural study of cortical remodeling in cytosine arabinoside induced granuloprival cerebellum in tissue culture. Neuroscience 7: 1509–1531

    Article  PubMed  CAS  Google Scholar 

  7. Cotman CW, Matthews DA, Taylor D, Lynch G (1973) Synaptic rearrangement in the dentate gyrus: histochemical evidence of adjustments after lesions in immature and adult rats. Proc Natl Acad Sci USA 70: 3473–3477

    Article  PubMed  CAS  Google Scholar 

  8. Cotman CW, Nieto-Sampedro M, Harris EW (1981) Synapse replacement in the nervous system of adult vertebrates. Physiol Rev 61: 684–784

    PubMed  CAS  Google Scholar 

  9. David S, Aguayo A (1981) Axonal elongation into PNS “bridges” after CNS injury in adult rats. Science 214: 931–933

    Article  PubMed  CAS  Google Scholar 

  10. Diamond J, Cooper E, Turner C, Maclntyre L (1976) Trophic regulation of nerve sprouting. Science 193: 371–377

    Article  PubMed  CAS  Google Scholar 

  11. Eccles JC, Ito M, Szentagothia J (1967) The cerebellum as a neuronal machine. Springer, Berlin Heidelberg New York

    Google Scholar 

  12. Field PM, Coldham DE, Raisman G (1980) Synapse formation in the adult rat brain: preferential reinnervation of denervated fimbrial sites by axons of the contralateral fimbria. Brain Res 189: 103–113

    Article  PubMed  CAS  Google Scholar 

  13. Hatton GI (1985) Reversible synapse formation and modulation of cellular relationships in the adult hypothalamus under physiological conditions, In: Cotman CW (ed) Synaptic plasticity. Guilford, New York, pp 373–404

    Google Scholar 

  14. Hollyday M, Hamburger V (1976) Reduction of the naturally occurring motor neuron loss by enlargement of the periphery. J Comp Neurol 170: 311–320

    Article  PubMed  CAS  Google Scholar 

  15. Ito M (1984) The cerebellum and neural control. Raven, New York

    Google Scholar 

  16. Jackson PC, Diamond J (1981) Regenerating axons reclaim sensory targets from collateral nerve sprouts. Science 214: 926–928

    Article  PubMed  CAS  Google Scholar 

  17. Lindvall O (1991) Prospects of transplantation in human neurodegenerative diseases. Trends Neurosci 14: 376–384

    Article  PubMed  CAS  Google Scholar 

  18. Liu C-N, Chambers WW (1958) Intraspinal sprouting of dorsal root axons. Arch Neurol Psychiatry 79: 46–61

    CAS  Google Scholar 

  19. Llinas R, Hillman DE, Precht W (1973) Neuronal circuit reorganization in mammalian agranular cerebellar cortex. J Neurobiol 4: 69–94

    Article  PubMed  CAS  Google Scholar 

  20. Lynch GS, Matthews DA, Mosko S, Parks T, Cotman CW (1972) Induced acetylcholinerich layer in rat dentate gyrus following entorhinal lesions. Brain Res 42: 311–318

    Article  PubMed  CAS  Google Scholar 

  21. Lynch GS, Gall C, Rose G, Cotman CW (1976) Changes in the distribution of the dentate gyrus associational system following unilateral or bilateral entorhinal lesion in the adult rat. Brain Res 110: 57–71

    Article  PubMed  CAS  Google Scholar 

  22. Murakami F, Katsumaru H, Saito K, Tsukahara N (1982) A quantitative study of synaptic reorganization in red nucleus neurons after lesion of the nucleus interpositus in the cat: an electrom microscopic study involving intracellular injection of horseradish peroxidase. Brain Res 242: 41–53

    Article  PubMed  CAS  Google Scholar 

  23. Nakamura Y, Mizuno N, Konishi A, Sato M (1974) Synaptic reorganization of the red nucleus after chronic deafferentation from cerebellorubral fibers: an electron microscopic study in the cat. Brain Res 82: 298–301

    Article  PubMed  CAS  Google Scholar 

  24. Raisman G (1969) Neuronal plasticity in the septal nuclei of the adult rat. Brain Res 14: 25–48

    Article  PubMed  CAS  Google Scholar 

  25. Raisman G (1985) Synapse formation in the septal nuclei of adult rats. In: Cotman CW (ed) Synaptic plasticity. Guilford, New York, pp 13–38

    Google Scholar 

  26. Raisman G, Field PM (1973) A quantitative investigation of the development of collateral reinnervation after partial deafferentation of the septal nuclei. Brain Res 71: 1–16

    Article  Google Scholar 

  27. Richardson PM, McQuinness UM, Aguayo A J (1980) Axons from CNS neurons regenerate into PNS grafts. Nature 284: 264–265

    Article  PubMed  CAS  Google Scholar 

  28. Scheff SW (1989) Synaptic reorganization after injury: the hippocampus as a model system. In: Seil FJ (ed) Neural regeneration and transplantation. Liss, New York, pp 137–156 (Frontiers of clinical neuroscience, vol 6 )

    Google Scholar 

  29. Schwab M, Caroni P (1988) Rat CNS myelin and a subtype of oligodendrocytes in culture represent a non-permissive substrate for neurite growth and fibroblast spreading. J Neurosci 8: 2381–2393

    PubMed  CAS  Google Scholar 

  30. Seil FJ (1979) Cerebellum in tissue culture. Rev Neurosci 4: 105–177

    Google Scholar 

  31. Seil FJ (1987) Enhanced Purkinje cell survival in granuloprival cerebellar cultures. Dev Brain Res 35: 312–316

    Article  Google Scholar 

  32. Seil FJ (1989) Axonal sprouting in response to injury. In: Seil FJ (ed) Neural regeneration and transplantation. Liss, New York, pp 123–135 (Frontiers of clinical neuroscience, vol 6 )

    Google Scholar 

  33. Seil FJ (1989) Tissue culture studies of neural plasticity. Restor Neurol Neurosci 1: 1–11

    PubMed  CAS  Google Scholar 

  34. Seil FJ, Leiman AL (1985) Evidence against neurotransmitter mediation of sprouting in granuloprival coeruleocerebellar cultures. Exp Neurol 87: 270–277

    Article  PubMed  CAS  Google Scholar 

  35. Seil FJ, Blank NK, Leiman AL (1979) Toxic effects of kainic acid on mouse cerebellum in tissue culture. Brain Res 161: 253–265

    Article  PubMed  CAS  Google Scholar 

  36. Seil FJ, Leiman AL, Woodward WR (1980) Cytosine arabinoside effects on developing cerebellum in tissue culture. Brain Res 186: 393–408

    Article  PubMed  CAS  Google Scholar 

  37. Seil FJ, Blank NK, Leiman AL (1983) Circuit reorganization in granuloprival and transplanted cerebellar cultures. In: Seil FJ (ed) Nerve, organ and tissue regeneration: research perspectives. Academic, New York, pp 283–300

    Google Scholar 

  38. Seil FJ, Leiman AL, Blank NK (1983) Reorganization in granuloprival cerebellar cultures after transplantation of granule cells and glia. I. Light microscopic and electrophysiological studies. J Comp Neurol 214: 258–266

    Google Scholar 

  39. Seil FJ, Meshul CK, Herndon RM (1988) Synapse regulation by transplanted astrocytes: a tissue culture study. In: Gash DM, Sladek JR Jr (eds) Prog Brain Res 78: 395–399

    Google Scholar 

  40. Seil FJ, Johnson ML, Saneto RP, Herndon RM, Mass MK (1989) Myelination of axons within cytosine arabinoside treated mouse cerebellar explants by cultured rat oligodendrocytes. Brain Res 503: 111–117

    Article  PubMed  CAS  Google Scholar 

  41. Seil FJ, Herndon RM, Tiekotter KL, Blank NK (1991) Reorganization of organotypic cultures of mouse cerebellum exposed to cytosine arabinoside: a timed ultrastructural study. J Comp Neurol 313: 193–212

    Article  PubMed  CAS  Google Scholar 

  42. Seil FJ, Eckenstein FP, Reier PJ (1992) Induction of dendritic spine proliferetion by an astrocyte secreted factor. Exp Neurol 117: 85–89

    Article  PubMed  CAS  Google Scholar 

  43. Smith GM, Rutishauser U, Silver J, Miller RH (1990) Maturation of astrocytes in vitro alter the extent and molecular basis of neurite outgrowth. Dev Biol 138: 377–390

    Article  PubMed  CAS  Google Scholar 

  44. Sotelo C, Privat A (1978) Synaptic remodeling of the cerebellar circuitry in mutant mice and experimental malformations. Acta Neuropathol (Berl) 43: 19–34

    Article  CAS  Google Scholar 

  45. Steward O, Davis L, Dolti C, Phillips LL, Rao A, Banker G (1988) Protein synthesis and processing in cytoplasmic microdomains beneath postsynaptic sites on CNS neurons. Mol Neurobiol 2: 227–261

    Article  PubMed  CAS  Google Scholar 

  46. Tsukahara N (1985) Synaptic plasticity in the red nucleus and its possible behavioral correlates, In: Cotman CW (ed) Synaptic plasticity. Guilford, New York, pp 201–229

    Google Scholar 

  47. Tsukahara N, Hultborn H, Murakami F (1974) Sprouting of cortico-rubral synapses in red nucleus neurones after destruction of the nucleus interpositus of the cerebellum. Experientia 30: 57–58

    Article  Google Scholar 

  48. Tsukahara N, Hultborn H, Murakami F, Fujito Y (1975) Electrophysiological study of formation of new synapses and collateral sprouting in red nucleus neurons after partial denervation. J Neurophysiol 38: 1359–1372

    PubMed  CAS  Google Scholar 

  49. Tweedle CD, Hatton GI (1984) Synapse formation and disappearance in adult rat supraoptic nucleus during different hydration states. Brain Res 309: 373–376

    Article  PubMed  CAS  Google Scholar 

  50. Vidal–Sanz M, Bray GM, Aguayo AJ (1991) Regenerated synapses persist in the superior colliculus after the regrowth of retinal ganglion cell axons. J Neurocytol 20: 940–952

    Article  Google Scholar 

  51. Weiller C, Chollet F, Friston KJ, Wise RJS, Frackowiak RSJ (1992) Functional reorganization of the brain in recovery from stratocapsular infarction in man. Ann Neurol 31: 463–472

    Article  PubMed  CAS  Google Scholar 

  52. Zander E, Weddell G (1951) Reaction of corneal nerve fibers to cornea injury. Br J Ophthalmol 35: 61–87

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Seil, F.J. (1994). Models of Neural Circuit Reorganization After Injury. In: Hartmann, A., Yatsu, F., Kuschinsky, W. (eds) Cerebral Ischemia and Basic Mechanisms. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78151-3_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78151-3_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78153-7

  • Online ISBN: 978-3-642-78151-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics