Advertisement

Nonlinear Optical Properties of GaAs/(AlGa) As Multiple Quantum Wells Under Quasistationary High Laser Excitation and Transversal Electric Fields

  • K.-H. Schlaad
  • Ch. Weber
  • U. Zimmermann
  • G. Weimann
  • C. v. Hoof
  • G. Borghs
  • C. Klingshirn
Part of the ESPRIT Basic Research Series book series (ESPRIT BASIC)

Abstract

We use the pump and probe beam and the luminescence spectroscopy to study the nonlinear response of GaAs/(AlGa)As heterostructures to quasistationary excitation conditions. The carrier induced energetic shift of the 1hh-exciton as a function of the quantum well width shows a dimensional dependence of the carrier screening properties. This shift gives a rather good criterion to decide if a system behaves more 2D or 3D like. The high excitation regime is dominated by electron-hole plasma features. Many particle effects lead to a renormalization of the fundamental bandgap. This effect is essential for understanding the physics of III–V semiconductor lasers. The carrier density and the reduced bandgap are determined via systematic evaluation of both gain and luminescence spectra. The observed behaviour can be described by a strict 2D theory using effective exciton parameters in order to account for the finite well widths of the structures. The study of the higher sub-bands reveals that both, exciton bleaching and sub-band renormalization are mainly due to direct occupation of the specific sub-band while intersub-band effects are considerably smaller. By coating the two sides of a 50×l00Å multiple quantum well with semitransparent Cr-Au electrodes we are able to control the energetic position of the 1hh-exciton as a function of the applied electric field and of the incoming light power. Several structures to optimize this effect in order to build an electrooptical switch or modulator are discussed.

Keywords

Probe Beam Nonlinear Optical Property Multiple Quantum Transversal Electric Field Excitonic Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Schmitt-Rink, S., Chemla, D. S., Miller, D. A. B.: Advances in Physics 38 (1989) 89.CrossRefGoogle Scholar
  2. 2.
    LePore, J. J.: J. Appl. Phys. 51 (1980) 6441.CrossRefGoogle Scholar
  3. 3.
    Schmitt-Rink, S., Chemla, D. S., Miller, D. A. B.: Phys. Rev. B 32 (1985) 6601.CrossRefGoogle Scholar
  4. 4.
    Zimmermann, R.: Phys.Stat. Sol. (b) 146 (1988) 371.CrossRefGoogle Scholar
  5. 5.
    Lee, H. C., Kost, A., Kawase, M., Hariz, A., Dapkus, P. D., Garmire, E.: IEEE J. Quant. Elec. QE-24 (1988) 1581.CrossRefGoogle Scholar
  6. 6.
    Park, S. H., Morhage, J. F., Jeffrey, A. D., Morgan, R. A., Chavez-Pirson, A., Gibbs, H. M., Koch, S. W., Peyghambarian, N., Derstine, M., Gossard, A. C., English, J. H., Wiegmann, W.: Appl. Phys. Lett. 52 (1988) 1201.CrossRefGoogle Scholar
  7. 7.
    Hulin, D., Mysyrowicz, A., Antonetti, A., Mingus, A., Masselink, W. T., Morkoc, H., Gibbs, H. M., Peyghambarian, N.: Phys. Rev. B 33 (1986) 4389.CrossRefGoogle Scholar
  8. 8.
    Fehrenbach, G. W., Schäfer, W., Treusch, J., Ulbrich, R. G.: Phys. Rev. Lett. 49 (1982) 1281.CrossRefGoogle Scholar
  9. 9.
    Majumder, F. A., Swoboda, H. E., Kempf, K., Klingshirn, C.: Phys. Rev. B 32 (1985) 2407.CrossRefGoogle Scholar
  10. 10.
    Swoboda, H. E., Majumder, F. A., Lyssenko, V. G., Klingshirn, C., Banyai, L.: Z. Phys. B — Condensed Matter 70 (1988) 341.CrossRefGoogle Scholar
  11. 11.
    Chang Y. C., Sanders, G. D.: Phys. Rev. B 32 (1985) 5521.CrossRefGoogle Scholar
  12. 12.
    Nozieres P., Comte, C.: J. Phys. (Paris) 43 (1982) 1083.CrossRefGoogle Scholar
  13. 13.
    Lach, E., Lehr, G., Forchel, A., Ploog, K., Weimann, G.: Surf. Sci. 228 (1990) 168.CrossRefGoogle Scholar
  14. 14.
    See e.g. Pokrovskii, Ya.: Phys. Stat. Sol. (a) 11 (1972) 385;CrossRefGoogle Scholar
  15. 14a.
    Jeffries, C. D.: Science 189 (1975) 955;CrossRefGoogle Scholar
  16. 14b.
    Rice, T. M.: Solid State Physics, 32, 1 (Academic Press, 1977);CrossRefGoogle Scholar
  17. 14c.
    Hensel, J. C., Philips, T. G., Thomas, G. A.: ibidSolid State Physics, 32 p. 88, and the references therein.Google Scholar
  18. 15.
    Haug, H., Schmitt-Rink, S.: Prog. Quant. Electron. 9, (1984) 3;CrossRefGoogle Scholar
  19. 15a.
    Haug, H., Koch, S. W.: Quantum Theory of the Optical and Electronic Properties of Semiconductors. World Scientific, Singapore (1990).Google Scholar
  20. 16.
    Brinkmann, W. F., Rice, T. M.: Phys. Rev. B 7 (1973) 1508.CrossRefGoogle Scholar
  21. 17.
    Zimmermann, R., Rösler, M.: Phys. Stat. Sol. (b) 75 (1976) 633.CrossRefGoogle Scholar
  22. 18.
    Shah, J.: IEEE J. Quantum. Electron. QE-22 (1986) 1728.CrossRefGoogle Scholar
  23. 19.
    Chemla, D. S., Miller, D. A. B., Smith, P. W., Gossard, A. C., Wiegmann, W.: IEEE J. Quantum. Electron. QE-20 (1984) 265.CrossRefGoogle Scholar
  24. 20.
    Schlaad, K.-H., Weber, Ch., Cunningham, J., Hoof, C. V., Borghs, G., Weimann, G., Schlapp, W., Nickel, H., Klingshirn, C., Phys. Rev. B 43 (1991) 4268.CrossRefGoogle Scholar
  25. 21.
    Hall, R. N.: Solid State Electron. 6 (1963) 405.Google Scholar
  26. 22.
    Landsberg, P. T.: Phys. Status Solidi 15 (1966) 623.CrossRefGoogle Scholar
  27. 23.
    Landsberg, P. T.: Solid State Electron. 28 (1985) 137.CrossRefGoogle Scholar
  28. 24.
    Klingshirn, C., Haug, H.: Phys. Rep. 70 (1981) 315.CrossRefGoogle Scholar
  29. 25.
    Schmitt-Rink, S., Ell, C: J. Lumin. 30 (1985) 585.CrossRefGoogle Scholar
  30. 26.
    Ell, C., Haug, H.: (unpublished).Google Scholar
  31. 27.
    Weber, Ch.: Ph.D. thesis, Fachbereich Physik der Universität Kaiserslautern, 1989.Google Scholar
  32. 28.
    Knox, W. H., Hirlimann, C., Miller, D. A. B., Shah, J., Chemla, D. S., Shank, C. V.: Phys. Rev. Lett. 56 (1986) 1191.CrossRefGoogle Scholar
  33. 29.
    Ell, C., Haug, H.: Phys. Status Solidi (b) 159 (1990) 117.CrossRefGoogle Scholar
  34. 30.
    Zimmermann, R.: submitted to Phys. Rev. B.Google Scholar
  35. 31.
    Miller, D. A. B.: In Optical Computing. Wherrett, B. S., Tooley, F. A. P., eds. Proc. of the 34th Scottish Universities Summer Scool in Physics 34 (1988) and references therein.Google Scholar
  36. 32.
    Weber, Ch., Schlaad, K.-H., Klingshirn, C., Hoof, C. v., Borghs, G., Weimann, G., Nickel, H.: Appl. Phys. Lett. 54 (1989) 2432.CrossRefGoogle Scholar

Copyright information

© ECSC — EEC — EAEC, Brussels — Luxembourg 1993

Authors and Affiliations

  • K.-H. Schlaad
    • 1
  • Ch. Weber
    • 1
  • U. Zimmermann
    • 1
  • G. Weimann
    • 2
  • C. v. Hoof
    • 3
  • G. Borghs
    • 3
  • C. Klingshirn
    • 1
  1. 1.Department of PhysicsUniversity of KaiserslauternKaiserslauternGermany
  2. 2.Walter-Schottky InstitutMünchenGermany
  3. 3.IMEC-MAPLeuvenBelgium

Personalised recommendations