Skip to main content

Carrier Transport Across Quantum Wells and Superlattices

  • Chapter
Gas Source Molecular Beam Epitaxy

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 26))

  • 263 Accesses

Abstract

The presence of quantum wells in semiconductors greatly alters the carrier transport properties, and the ability offered by GSMBE methods to produce a large variety of such structures makes possible the detailed study of this alteration. In structures with quantum wells the anisotropic three-dimensional carrier motion breaks down into two distinct components. The most dramatic and well-studied effect arising in the plane of the quantum well is the high mobility of the two-dimensional electron (or hole) gas. This effect is most pronounced in modulation doped single hetero-interfaces and quantum wells at low temperatures [8.1–3]. The carrier transport in the direction of growth, i.e. perpendicular to the quantum well plane, has received much less attention. The transport perpendicular to the layers depends strongly on the temperature, heterojunction offsets, barrier thicknesses and carrier type. While at high temperatures thermionic emission over barriers and phonon assisted tunneling may be dominant, at low temperatures carriers must tunnel through the barriers. The tunneling transport rates vary greatly with the carrier effective mass and thus very different mobilities are observed for electrons and holes. The detailed understanding of such characteristics is important for the design of quantum well lasers, heterostructure bipolar transistors, avalanche photodiodes [8.4,5], and tunneling photodetectors [8.6]. These devices are discussed in Chaps. 9 and 10.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. L. Stormer, R. Dingle, A. C. Gossard, W. Wiegmann: Inst. Phys. Conf. Ser. 43, 557 (1978)

    Google Scholar 

  2. H. Temkin, Y. K. Chen, P. A. Garbinski, T. Tanbun-Ek, R. A. Logan: Appl. Phys. Lett. 53, 2534 (1988)

    Article  ADS  Google Scholar 

  3. Loren. Pfeifer, K. W. West, H. L. Stormer, K. W. Baldwin: Appl. Phys. Lett. 55, 1888 (1989)

    Article  ADS  Google Scholar 

  4. S. R. Forrest, O. K. Kim, R. G. Smith: Appl. Phys. Lett. 41, 95 (1982)

    Article  ADS  Google Scholar 

  5. J. C. Campbell, A. G. Denati, W. S. Holden, B. L. Kasper: Electron. Lett. 9, 818 (1983)

    Article  ADS  Google Scholar 

  6. B. F. Levine, C. G. Bethea, G. Hasnain, V. O. Shen, E. Pelve, R. R. Abbott, S. J. Hsieh: Appl. Phys. Lett. 56, 851 (1990)

    Article  ADS  Google Scholar 

  7. D. V. Lang: Thermally Stimulated Relaxation in Solids, ed. by P. Braunlich, Topics in Appl. Phys. Vol. 37, (Springer, Berlin, Heidelberg 1979) p. 93

    Google Scholar 

  8. G. L. Miller, D. V. Lang, L. C. Kimerling: Ann. Rev. Sci. 1977, p. 374

    Google Scholar 

  9. W. G. Oldham, S. S. Naik: Solid-State Electron. 15, 1085 (1972)

    Article  ADS  Google Scholar 

  10. H. C. Casey, Jr., A. Y. Cho, D. V. Lang, E. H. Nicollian, P. W. Foy: J. Appl. Phys. 50, 3484 (1979)

    Article  ADS  Google Scholar 

  11. D. V. Lang: Heterojunction Band Offsets, ed. by F. Capasso, G. Margaritondo (North-Holland, Amsterdam 1987) pp. 377–396

    Google Scholar 

  12. G. L. Miller: IEEE Trans. Electron. Dev. ED-19, 1103 (1972)

    Article  Google Scholar 

  13. D. V. Lang, A. M. Sergent, M. B. Panish, H. Temkin: Appl. Phys. Lett. 49, 812 (1986)

    Article  ADS  Google Scholar 

  14. R. E. Cavicchi, D. V. Lang, D. Gershoni, A. M. Sergent, H. Temkin, M. B. Panish: Phys. Rev. B15 38, 13474 (1988)

    ADS  Google Scholar 

  15. K. Seeger: Semiconductor Physics (Springer, Berlin, Heidelberg 1973)

    Google Scholar 

  16. E. F. Schubert, R. F. Kopf, J. M. Kuo, H. S. Luftman, P. A. Garbinski: Appl. Phys. Lett. 57, 497 (1990)

    Article  ADS  Google Scholar 

  17. D. V. Lang, M. B. Panish, F. Capasso, J. Allam, R. A. Hamm, A. M. Sergent, W. T. Tsang: Appl. Phys. Lett. 50, 736 (1987)

    Article  ADS  Google Scholar 

  18. D. V. Lang, M. B. Panish, F. Capasso, J. Allam, R. A. Hamm, A. M. Sergent: J. Vac. Sci. Technol. 5, 1215 (1987)

    Article  Google Scholar 

  19. R. E. Cavicchi, D. V. Lang, D. Gershoni, A. M. Sergent, J. M. Vandenberg, S. N. G. Chu, M. B. Panish: Appl. Phys. Lett. 54, 739 (1989)

    Article  ADS  Google Scholar 

  20. J. Batey, S. L. Wright, D. J. DiMaria: J. Appl. Phys. 57, 484 (1985)

    Article  ADS  Google Scholar 

  21. S. M. Sze: Physics of Semiconductor Devices (Wiley, New York 1981) p. 126

    Google Scholar 

  22. S. M. Sze: Physics of Semiconductor Devices (Wiley, New York 1981) p. 77

    Google Scholar 

  23. P. A. Martin, K. Hess, M. Emanuel, J. J. Coleman: J. Appl. Phys. 60, 2882 (1986)

    Article  ADS  Google Scholar 

  24. J. Allam, F. Capasso, M. B. Panish, A. L. Hutchinson: Appl. Phys. Lett. 49, 707 (1986)

    Article  ADS  Google Scholar 

  25. S. Flugge, H. Marschall: Rechenmethoden der Quantentheorie Dargestellt In Aufgaben Und Lösungen (Springer, Berlin, Heidelberg 1952)

    Google Scholar 

  26. F. Capasso, K. Mohammed, A. Y. Cho, R. Hull, A. L. Hutchinson: Appl. Phys. Lett. 47,420 (1985)

    Article  ADS  Google Scholar 

  27. A. Antreasyan, P. A. Garbinski, V. D. Mattera Jr., N. A. Olsson, H. Temkin: J. Appl. Phys. 60,1535 (1986)

    Article  ADS  Google Scholar 

  28. A. Rose: Concepts in Photoconductivity and Allied Problems (Wiley-Interscience, New York 1963) pp. 82–91

    Google Scholar 

  29. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus: Phys. Rev. B32, 1043 (1984)

    ADS  Google Scholar 

  30. S. R. Forrest, O. K. Kim: J. Appl. Phys. 52, 5838 (1981)

    Article  ADS  Google Scholar 

  31. R. E. Cavicchi, M. B. Panish: J. Appl. Phys. 67, 873 (1990)

    Article  ADS  Google Scholar 

  32. R. C. Miller, D. A. Kleinman, A. C. Gossard, O. Monteanu: Phys. Rev. B25, 6545 (1982)

    ADS  Google Scholar 

  33. K. Mohammed, F. Capasso, J. Allam, A. Y. Cho, A. L. Hutchinson: Appl. Phys. Lett. 47, 597 (1985)

    Article  ADS  Google Scholar 

  34. A. S. Grove: Physics and Technology of Semiconductor Devices (Wiley, New York 1967) pp. 219–227

    Google Scholar 

  35. M. Ogura, M. Mizuta, K. Onaka, H. Kukimoto: Jpn. J. Appl. Phys. 22, 1502 (1983)

    Article  ADS  Google Scholar 

  36. K. Steiner, R. Schmitt, R. Zuleeg, L. M. F. Kaufmann, K. Heime, E. Kuphal, J. Wolter: Surf. Sci. 174, 331 (1986)

    Article  ADS  Google Scholar 

  37. H. Temkin, M. B. Panish, P. M. Petroff, R. A. Hamm, J. M. Vandenberg, S. Sumski: Appl. Phys. Lett. 47, 394 (1985)

    Article  ADS  Google Scholar 

  38. T. P. Pearsall: In GaInAs Alloy Semiconductors ed. by T. P. Pearsall (Wiley-Interscience, New York 1982) p. 300

    Google Scholar 

  39. S. R. Forrest, P. H. Schmidt, R. B. Wilson, M. L. Kaplan: Appl. Phys. Lett. 45, 1199 (1984)

    Article  ADS  Google Scholar 

  40. J. W. Matthews, A. E. Blakeslee: J. Cryst. Growth 27, 118 (1974)

    ADS  Google Scholar 

  41. H. Temkin, D. G. Gershoni, S. N. G. Chu, J. M. Vandenberg, R. A. Hamm, M. B. Panish: Appl. Phys. Lett. 55, 1668 (1989)

    Article  ADS  Google Scholar 

  42. D. Gershoni, H. Temkin, M. B. Panish: Phys. Rev. B38, 7870 (1988)

    Google Scholar 

  43. D. Gershoni, H. Temkin: J. Lumin. 44, 381 (1989)

    Article  Google Scholar 

  44. K. S. Ralls, W. J. Skocpol, L. D. Jackel, R. E. Howard, L. A. Fetter, P. W. Epworth, D. M. Tennant: Phys. Rev. Lett. 52, 228 (1989)

    Article  ADS  Google Scholar 

  45. K. R. Farmer, C. T. Rogers, R. A. Buhrman: Phys. Rev. Lett. 58, 2255 (1987)

    Article  ADS  Google Scholar 

  46. D. J. Rose: Phys. Rev. 105, 413 (1957)

    Article  ADS  Google Scholar 

  47. M. J. Buckingham: Noise in Electronic Devices and Systems (Wiley, New York 1983) p. 180

    Google Scholar 

  48. A. Luque, J. Mulet, T. Rodriguez, R. Segovia: Electron. Lett. 6, 176 (1970)

    Article  Google Scholar 

  49. S. T. Hsu, R. J. Whittier, C. A. Mead: Solid-State Electron. 13, 1055 (1970)

    Article  ADS  Google Scholar 

  50. G. Doblinger: In Noise in Physical Systems, ed. by D. Wolf, Springer Ser. Electrophys., Vol. 2 (Springer, Berlin, Heidelberg 1978) pp. 64–69

    Google Scholar 

  51. C. T. Rogers, R. A. Buhrman: Phys. Rev. Lett. 53, 1272 (1984)

    Article  ADS  Google Scholar 

  52. T. Judd, N. R. Couch, P. H. Beton, M. J. Kelly, T. M. Kerr, M. Pepper: Appl. Phys. Lett. 49, 1653 (1986)

    Article  ADS  Google Scholar 

  53. A. G. Chynoweth, G. L. Pearson: J. Appl. Phys. 29, 1103 (1958)

    Article  ADS  Google Scholar 

  54. B. Deveaud, T. C. Damen, J. Shah, C. W. Tu: Appl. Phys. Lett. 51, 828 (1987)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Panish, M.B., Temkin, H. (1993). Carrier Transport Across Quantum Wells and Superlattices. In: Gas Source Molecular Beam Epitaxy. Springer Series in Materials Science, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78127-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78127-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78129-2

  • Online ISBN: 978-3-642-78127-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics