Skip to main content

Part of the book series: NATO ASI Series ((NATO ASI F,volume 108))

Abstract

Concepts, methods and tools for interactive CAD-based concurrent engineering design optimization of mechanical products, systems and components which are critical in terms of cost, development time, functionality and quality, are presented. The emphasis is on formulation, development and implementation of methods and capabilities for finite element analysis, design sensitivity analysis, rational design, synthesis and optimization of mechanical systems and components, and the integration of these methods into a standard CAD modeling environment with a view to develop a concurrent engineering design optimization system. Methods for optimizing the topology of mechanical components are integrated into the system and used as a preprocessor for subsequent shape and sizing optimization. Use of the system for concurrent engineering design of mechanical components is illustrated by examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Haug, E.J.: A review of distributed parameter structural optimization literature. In: Optimization of distributed parameter structures (E.J. Haug & J. Cea, Eds.). Vol. 1, pp. 3–74. Alphen aan den Rijn: Sijthoff & Noordhoff 1981.

    Google Scholar 

  2. Olhoff, N. & Taylor, J.E.: On structural optimization. J. of Appl. Mech. 50, 1139–1151 (1983).

    Article  MATH  MathSciNet  Google Scholar 

  3. Esping, B.J.D.: The OASIS structural optimization system. Computers & Structures, 23, 365–377 (1984).

    Article  Google Scholar 

  4. Braibant, V. & Fleury, G: Shape optimal design using B-splines. Comp. Meths. Appl. Mech. Engrg. 44, 247–267 (1984).

    Article  MATH  Google Scholar 

  5. Bennett, J.A. & Botkin, M.E.: Structural shape optimization with geometric description and adaptive mesh refinement. AIAA J. 23, 458–464 (1985).

    Article  Google Scholar 

  6. Botkin, M.E., Yang, R.J. & Bennet, J.A.: Shape optimization of three-dimensional stamped and solid automotive components. In: The optimum shape. Automated structural design ( J.A. Bennet & M.E. Botkin, Eds.). New York: Plenum Press 1986.

    Google Scholar 

  7. Stanton, E.L.: Geometric modeling for structural and material shape optimization. In: Loc. cit. 6.

    Google Scholar 

  8. Eschenauer, H.: Numerical and experimental investigations of structural optimization of engineering designs. Siegen: Bonn+Fries, Druckerei und Verlag 1986.

    Google Scholar 

  9. Ding, Y.: Shape optimization of structures: A literature survey. Computers & Structures 24, 985–1004 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  10. Hömlein, H.R.E.M.: Take-off in optimum structural design. In: Computer aided optimal design. Structural and mechanical systems. NATO ASI Series F: Computer and System Sciences (C.A. Mota Soares, Ed.). Vol. 27, Springer-Verlag 1987.

    Google Scholar 

  11. Sobieszanski-Sobieski, J. & Rogers, J.L.: A programming system for research and applications in structural optimization. In: New directions in optimum structural design (E. Atrek et. al., Eds.), pp. 563–585. Chichester: Wiley 1984.

    Google Scholar 

  12. Kneppe, G., Hartzheim, W. & Zimmermann, G.: Development and application of an optimization procedure for space and aircraft structures. In: Discretization methods and structural optimization—procedures and applications (H.A. Eschenauer & G. Thierauf, Eds.), pp. 194–201, Berlin: Springer- Verlag.

    Google Scholar 

  13. Arora, J.S.: Interactive design optimization of structural systems. In: Loc. cit. 12, pp. 10–16.

    Google Scholar 

  14. Choi, K.K. & Chang, K.H.: Shape design sensitivity analysis and what-if workstation for elastic solids. The University of Iowa, TH Report R-105, April 1991.

    Google Scholar 

  15. Rasmussen, J.: The structural optimization system CAOS. Structural Optimization 2, 109–115 (1990).

    Article  Google Scholar 

  16. Rasmussen, J.: Shape optimization and CAD. Int. J. Systems Automation 1, 35 - 47 (1991).

    Google Scholar 

  17. Rasmussen, J., Lund, E. & Birker, T.: Collection of examples. CAOS optimization system. 3rd edition. Special Report No. 13, Institute of Mechanical Engineering, Aalborg University, April 1992.

    Google Scholar 

  18. Olhoff, N., Bendsee, M.P. & Rasmussen, J.: On CAD-integrated structural topology and design optimization. Comp. Melhs. Appl. Mech. Engrg. 89, 259–279 (1991).

    Article  Google Scholar 

  19. Bendsee, M.P., Olhoff, N. & Taylor, J.E.: A variational formulation for multicriteria structural optimization. J. Struct. Mech. 11, 523–544 (1983).

    Article  Google Scholar 

  20. Taylor, J.E. & Bendsee, M.P.: An interpretation of min-max structural design problems including a method for relaxing constraints. Int. J. Solids Struct. 20, 301–314 (1984).

    Article  MATH  Google Scholar 

  21. Olhoff, N.: Multicriterion structural optimization via bound formulation and mathematical programming. Structural Optimization 1, 11–17 (1989).

    Article  Google Scholar 

  22. Fleury, C. & Braibant, V.: Structural optimization: Anew dual method using mixed variables. Int. J. Num. Meths. Engrg. 23, 409–428 (1986).

    Article  MATH  MathSciNet  Google Scholar 

  23. Svanberg, K.: The method of moving asymptotes - a new method for structural optimization. Int. J. Num. Meths. Engrg. 24, 359–373 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  24. Zienkiewicz, O.C. & Campbell, J.S.: Shape optimization and sequential linear programming. In: Optimum structural design—theory and applications (R.H. Gallagher & O.C. Zienkiewicz, Eds.), pp. 109–126. London: Wiley and Sons 1973.

    Google Scholar 

  25. Cheng, G. & Liu, Y.: A new computation scheme for sensitivity analysis. Engrg. Opt. 12, 219–235 (1987).

    Article  Google Scholar 

  26. Barthelemy, B. & Haftka, R.T.: Accuracy analysis of the semi-analytical method for shape sensitivity analysis. Mech. Struct. & Mach. 18, 407–432 (1990).

    Article  Google Scholar 

  27. Pedersen, P., Cheng, G. & Rasmussen, J.: On accuracy problems for semi-analytical sensitivity analysis. Mech. Struct. & Mach. 17, 373–384 (1989).

    Article  Google Scholar 

  28. Cheng, G., Gu, Y. & Zhou, Y.: Accuracy of semi-analytical sensitivity analysis. Finite Elements in Analysis and Design 6, 113–128 (1989).

    Article  MATH  Google Scholar 

  29. Olhoff, N. & Rasmussen, J.: Study of inaccuracy in semi-analytical sensitivity analysis—a model problem. Structural Optimization 3, 203–213 (1991).

    Article  Google Scholar 

  30. Fenyes, P.A. & Lust, R.V.: Error analysis of semi-analytical displacement derivatives for shape and sizing variables. AIAA J. 29, 217–279 (1991).

    Article  Google Scholar 

  31. Cheng, G. & Olhoff, N.: New method of error analysis and detection in semi-analytical sensitivity analysis. Report no. 36, Institute of Mechanical Engineering, Aalborg University, May 1991 (to appear in Compters and Structures).

    Google Scholar 

  32. Olhoff, N., Rasmussen, J. & Lund, E.: Method of “exact” numerical differentiation for error elimination in finite element based semi-analytical shape sensitivity analyses. Special Report no. 10, Institute of Mechanical Engineering, Aalborg University, February 1992 (to appear in Mech. Struct. & Mach.).

    Google Scholar 

  33. Braibant, V.: Shape sensitivity by finite elements. J. Struct. Mech. 14, 209–228 (1986).

    Article  MathSciNet  Google Scholar 

  34. Pedersen, P.: On the minimum mass layout of trusses. Proc. AGARD Symposium 1970, Istanbul, AGARD-CP-36-70, 1970.

    Google Scholar 

  35. Pedersen, P.: On the optimal layout of multi-purpose trusses. Computers & Structures 2, 695–712 (1972).

    Article  Google Scholar 

  36. Pedersen, P.: Optimal joint positions for space trusses. J. Struct. Div., ASCE 99, 2459–2476 (1973).

    Google Scholar 

  37. Bendsoe, M.P. & Kikuchi, N.: Generating optimal topologies in structural design using a homogenization method. Comp. Meths. Appl. Mech. Engrg. 171, 197–224 (1988).

    Article  MathSciNet  Google Scholar 

  38. Bendsoe, M.P.: Optimal shape design as a material distribution problem. Structural Optimization 1, 193–202 (1989).

    Article  Google Scholar 

  39. Pedersen, P.: On optimal orientation of orthotopic materials. Structural Optimization 1, 101–106 (1989).

    Article  Google Scholar 

  40. Pedersen, P.: Bounds on elastic energy in solids of orthotopic materials. Structural Optimization 2, 55–63 (1990).

    Article  Google Scholar 

  41. Diaz, A.R. & Bendsoe, M.P.: Shape optimization of structures for multiple loading conditions using a homogenization method. Structural Optimization 4, 17–22 (1992).

    Article  Google Scholar 

  42. Thomsen, J.: Topology optimization of structures composed of one or two materials. (To appear in Structural Optimization).

    Google Scholar 

  43. Bendsee, M.P. & Rodrigues, H.C.: Integrated topology and boundary shape optimization of 2-D solids. Comp. Meths. Appl. Mech. Engrg. 87, 15–34 (1991).

    Article  Google Scholar 

  44. Suzuki, K. & Kikuchi, N.: A homogenization method for shape and topology optimization. Comp. Meths. Appl. Mech. Engrg. 93, 291 - 318 (1991).

    Article  MATH  Google Scholar 

  45. Papalambros, P.Y. & Chirehdast, M.: An integrated environment for structural configuration design. J. Engrg. Design 1, 73–96 (1990).

    Article  Google Scholar 

  46. Bremicker, M., Chirehdast, M., Kikuchi, N. & Papalambros, P.: Integrated topology and shape optimization in structural design. Mech. Struct. & Mach. 19, 551–587 (1991).

    Article  Google Scholar 

  47. Thomsen, J.: Optimization of composite discs. Structural Optimization 3, 89–98 (1991).

    Article  Google Scholar 

  48. Rodrigues, H.C.: Shape optimal design of elastic bodies using a mixed variational formulation. Comp. Meths. Appl. Mech. Engrg. 69, 29–44 (1988).

    Article  MATH  Google Scholar 

  49. Bråmå, T. & Rosengren, R.: Application of the structural optimization program OPTSYS. Proc. ICAS Conf. 1990. ICAS-90-2. 1. 3, 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Olhoff, N., Lund, E., Rasmussen, J. (1993). Concurrent Engineering Design Optimization in a CAD Environment. In: Haug, E.J. (eds) Concurrent Engineering: Tools and Technologies for Mechanical System Design. NATO ASI Series, vol 108. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78119-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78119-3_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78121-6

  • Online ISBN: 978-3-642-78119-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics