Saccadic and Fixation Systems of Oculomotor Control in Monkey Superior Colliculus

  • Robert H. Wurtz
  • Douglas P. Munoz
Conference paper
Part of the Research Notes in Neural Computing book series (NEURALCOMPUTING, volume 4)


Saccadic eye movements and the intervening periods of visual fixation represent one of the simplest behavioral systems that have been studied in the primate. The Superior Colliculus (SC) is a key structure in both systems, but only one step in a control system extending from cerebral cortex to the pons. Recent experiments on the saccadic system have shown that a modified feedback system controlling the position of the eyes can explain key aspects of the initiation of saccades by the SC. Identification of a fixation zone within the anterior colliculus Ims emphasized the importance of active fixation. Initial studies of the interaction between these two systems are consistent with the idea that one inhibits the other, and further experiments may provide a model for the study of the interactions between systems.


Superior Colliculus Saccade Latency Saccadic Amplitude Express Saccade Spike Density 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Edwards, S. B. and C. K. Henkel (1978) Superior colliculus connections with the extraocular motor nuclei in the cat. J. Comp. Neurol. 179: 451–468.CrossRefGoogle Scholar
  2. Fischer, B. (1987) The preparation of visually guided saccades. Rev. Physiol. Biochem. Pharmacol. 106: 1–35.CrossRefGoogle Scholar
  3. Fischer, B. and R. Boch (1983) Saccadic eye movements after extremely short reaction times in the monkey. Brain Res. 260: 21–26.CrossRefGoogle Scholar
  4. Hikosaka, O. and R. H. Wurtz (1983) Visual and oculomotor functions of monkey substantia nigra pars reticulata, n. Visual responses related to fixation of gaze. J. Neurophysiol. 49: 1254–1267.Google Scholar
  5. Hikosaka, O. and R. H. Wurtz (1985) Modification of saccadic eye movements by GABA- related substances. I. Effect of muscimol and bicuculline in monkey superior colliculus. J. Neurophysiol. 53: 266–291.Google Scholar
  6. Jürgens, R., W. Becker, and H. H. Kornhuber (1981) Natural and drug-induced variations of velocity and duration of human saccadic eye movements: Evidence for a control of the neural pulse generator by local feedback. Biol. Cybern. 39: 87–96.CrossRefGoogle Scholar
  7. Lefevre, Ph. and H. L. Galiana (1990) Velocity versus position feedback to the superior colliculus in gaze control modelling. Soc. Neurosci. Abstr. 16: 1084.Google Scholar
  8. Mountcastle, V. B., R. A. Andersen, and B. C. Motter (1981) The influence of attentive fixation upon the excitability of the light-sensitive neurons of the posterior parietal cortex. J. Neurosci. 1: 1218–1235.Google Scholar
  9. Munoz, D. P. and D. Guitton (1989) Fixation and orientation control by the tecto-reticulo- spinal system in the cat whose head is unrestrained. Rev. Neurol. (Paris) 145: 561–579.Google Scholar
  10. Munoz, D. P. and D. Guitton (1991) Control of orienting gaze shifts by the tectoreticulospinal system in the head-free cat. II. Sustained discharges during motor preparation and fixation. J. Neurophysiol. 66: 1624–1641.Google Scholar
  11. Munoz, D. P., D. Guitton, and D. Pisson (1991) Control of orienting gaze shifts by the tectoreticulospinal system in the head-free cat. III. Spatiotemporal characteristics of phasic motor discharges. J. Neurophysiol. 66: 1642–1666.Google Scholar
  12. Munoz, D. P., D. M. Waitzman, and R. H. Wurtz (1990) Evidence for a fixation zone in the rostral superior colliculus of the monkey. Soc. Neurosci. Abstr. 16: 1084.Google Scholar
  13. Robinson, D. A. (1975) Oculomotor control signals. In Basic Mechanisms of Ocular Motility and Their Clinical Implications, G. Lennerstrand, P. Bach-y-Rita, ed., pp. 337–374, Pergamon Press, Oxford.Google Scholar
  14. Rohrer, W. H., J. M. White, and D. L. Sparks (1987) Saccade-related burst cells in the superior colliculus: relationship of activity with saccadic velocity. Soc. Neurosci. Abstr. 13: 1092.Google Scholar
  15. Sparks, D. L. and L. E. Mays (1990) Signal transformations required for the generation of saccadic eye movements. Ann. Rev. Neurosci. 13: 309–36.CrossRefGoogle Scholar
  16. Waitzman, D. M., T. P. Ma, L. M. Optican, and R. H. Wurtz (1988) Superior colliculus neurons provide the saccadic motor error signal. Exp. Brain Res. 72: 649–652.CrossRefGoogle Scholar
  17. Waitzman, D. M., T. P. Ma, L. M. Optican, and R. H. Wurtz (1991) Superior colliculus neurons mediate the dynamic characteristics of saccades. J. Neurophysiol. 66: 1716–1737.Google Scholar
  18. Weber, H. and B. Fischer (1990) Effect of a local ibotenic acid lesion in the visual association area on the prelunate gyrus (area V4) on saccadic reaction times in trained rhesus monkeys. Exp. Brain Res. 81: 134–139.CrossRefGoogle Scholar
  19. Wurtz, R. H. and J. E. Albano (1980) Visual-motor function of the primate superior colliculus. Ann. Rev. Neurosci. 3: 189–226.Google Scholar
  20. Wurtz, R. H. and M. E. Goldberg (1972) Activity of superior colliculus in behaving monkey: HI. Cells discharging before eye movements. J. Neurophysiol. 35: 575–586.Google Scholar
  21. Wurtz, R. H. and M. E. Goldberg (1989) The Neurobiology of Saccadic Eye Movements, Reviews of Oculomotor Research, Vol. III, Elsevier, Amsterdam.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Robert H. Wurtz
    • 1
  • Douglas P. Munoz
    • 1
  1. 1.Laboratory of Sensorimotor ResearchNational Eye InstituteBethesdaUSA

Personalised recommendations