Structure and Function of MHC Class I Molecules

  • H. G. Rammensee
Conference paper

Abstract

The immune system consists of various, rather heterogeneous components with a wide spectrum of complexities. Some of the components are rather simple devices, such as the barrier functions exerted by skin or by gastric fluid. Others are more sophisticated, as exemplified by the presence of lysozyme in secretory fluids, resulting in the selective destruction of bacterial cell walls. The complement cascade is among the more complex components of the immune system, whereas its adaptive parts, the T cell and B cell compartments with their accessories, are the most sophisticated of all.

Keywords

HPLC Tyrosine Influenza Enzymatic Degradation Cytosol 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Klein J (1986) Natural history of the major histocompatibility complex. Wiley, New YorkGoogle Scholar
  2. 2.
    Snell GD (1948) Methods for the study of histocompatibility genes. J Genetics 49:87–108CrossRefGoogle Scholar
  3. 3.
    Davis AP, Roopenian DC (1990) Complexity at the mouse minor histocompatibility locus H-4. Immunogenetics 31:7–12PubMedCrossRefGoogle Scholar
  4. 4.
    Counce S, Smith P, Barth R, Snell GD (1956) Strong and weak histocompatibility gene differences in mice and their role in the rejection of homografts of tumors and skin. Ann Surg 144:198–204PubMedCrossRefGoogle Scholar
  5. 5.
    McDevitt HO, Benacerraf B (1969) Genetic control of specific immune responses. Adv Immunol 11:31–74PubMedCrossRefGoogle Scholar
  6. 6.
    Kindred B, Shreffler DC (1972) H-2 dependence of co-operation between Tand B cells in vivo. J Immunol 109:940–943PubMedGoogle Scholar
  7. 7.
    Zinkernagel RM and Doherty PC (1974) Restriction of in vitro T cell-mediated cytotoxicity in lymphocytic choriomeningitis within a syngeneic or semiallogeneic system. Nature 248:701–702PubMedCrossRefGoogle Scholar
  8. 8.
    Klein J (1979) The major histocompatibility complex of the mouse. Science 203:516–521PubMedCrossRefGoogle Scholar
  9. 9.
    Zemmour J, Parham P (1991) HLA class I nucleotide sequences, 1991. Immunogenetics 33:310–320PubMedCrossRefGoogle Scholar
  10. 10.
    Bjorkman PJ, Saper MA, Samraoui B, Bennett WS, Strominger JL, Wiley DC (1987) Structure of the human class I histocompatibility antigen, HLA-A2. Nature 329:506–512PubMedCrossRefGoogle Scholar
  11. 11.
    Madden DR, Gorga JC, Strominger JL, Wiley DC (1991) The structure of HLA-B27 reveals nonamer self-peptides bound in an extended conformation. Nature 353:321–325PubMedCrossRefGoogle Scholar
  12. 12.
    Rötzschke O, Falk K (1991) Naturally occurring peptide antigens derived from MHC class I-restricted processing pathway. Immunol Today 12:447–455PubMedCrossRefGoogle Scholar
  13. 13.
    Unanue ER, Cerottini J-C (1989) Antigen presentation. FASEB J 3:2496–2502PubMedGoogle Scholar
  14. 14.
    Townsend AR, Gotch FM, Davey J (1985) Cytotoxic T cells recognize fragments of the influenza nucleoprotein. Cell 42:457–467PubMedCrossRefGoogle Scholar
  15. 15.
    Wabuke-Bunoti MAN, Taku A, Fan DP, Kent S, Webster RG (1984) Cytolytic T lymphocyte and antibody responses to synthetic peptides of influenza virus hemagglutinin. J Immunol 133:2194–2201PubMedGoogle Scholar
  16. 16.
    Townsend AR, Rothbard J, Gotch FM, Bahadur G, Wraith D, McMichael AJ (1986) The epitopes of influenza nucleoprotein recognized by cytotoxic T lymphocytes can be defined with short synthetic peptides. Cell 44:959–968PubMedCrossRefGoogle Scholar
  17. 17.
    Taylor PM, Davey J, Howland K, Rothbard JB, Askonas BA (1987) Class I MHC molecules rather than other mouse genes dictate influenza epitope recognition by cytotoxic T cells. Immunogenetics 26:267–272PubMedCrossRefGoogle Scholar
  18. 18.
    Rötzschke O, Falk K, Deres K, Schild H, Norda M, Metzger J, Jung G, Rammensee H-G (1990) Isolation and analysis of naturally processed viral peptides as recognized by cytotoxic T cells. Nature 348:252–254PubMedCrossRefGoogle Scholar
  19. 19.
    Van Bleek GM, Nathenson SG (1990) Isolation of an immunodominant viral peptide from the class I H-2Kb molecule. Nature 348:213–216PubMedCrossRefGoogle Scholar
  20. 20.
    Bevan MJ (1987) Antigen recognition. Class discrimination in the world of immunology. Nature 325:192–194PubMedCrossRefGoogle Scholar
  21. 21.
    Germain RN (1986) The ins and outs of antigen processing and presentation. Nature 322:687–689PubMedCrossRefGoogle Scholar
  22. 22.
    Wallny H-J, Rammensee H-G (1990) Identification of classical minor histocompatibility antigen as cell-derived peptide. Nature 343:275–278PubMedCrossRefGoogle Scholar
  23. 23.
    Rötzschke O, Falk K, Wallny H-J, Faath S, Rammensee H-G (1990) Characterization of naturally occurring minor histocompatibility peptides including H-4 and H-Y Science 249:283–287PubMedCrossRefGoogle Scholar
  24. 24.
    Rötzschke O, Falk K, Faath S, Rammensee H-G (1991) On the nature of peptides involved in T cell alloreactivity. J Exp Med 174:1059–1071PubMedCrossRefGoogle Scholar
  25. 25.
    Loveland B, Wang CR, Yonekawa H, Hermel E, Lindahl KF (1990) Maternally transmitted histocompatibility antigen of mice: a hydrophobic peptide of a mitochon-drially encoded protein. Cell 60:971–980PubMedCrossRefGoogle Scholar
  26. 26.
    Fischer Lindahl K, Wilson DB (1977) Histocompatibility antigen-activated cytotoxic T lymphocytes. II. Estimates of the frequency and specificity of precursors. J Exp Med 145:508–522CrossRefGoogle Scholar
  27. 27.
    Matzinger P, Bevan MJ (1977) Hypothesis: why do so many lymphocytes respond to major histocompatibility antigens. Cell Immunol 29:1–5PubMedCrossRefGoogle Scholar
  28. 28.
    Bevan MJ (1984) High determinant density may explain the phenomenon of alloreactivity. Immunol Today 5:128CrossRefGoogle Scholar
  29. 29.
    Kaye J and Janeway CA, Jr. (1984) The Fab fragment of a directly activating monoclonal antibody that precipitates a disulfide-linked heterodimer from a helper T cell clone blocks activation by either allogeneic Ia or antigen and self-la. J Exp Med 159:1397–1412PubMedCrossRefGoogle Scholar
  30. 30.
    Heath WR, Hurd ME, Carbone FR, Sherman LA (1989) Peptide-dependent recognition of H-2Kb by alloreactive cytotoxic T lymphocytes. Nature 341:749–752PubMedCrossRefGoogle Scholar
  31. 31.
    de Koster HS, Anderson DC, Termijtelen A (1989) T cells sensitized to synthetic HLA-DR3 peptide give evidence of continuous presentation of denatured HLA-DR3 molecules by HLA-DP. J Exp Med 169:1191–1196PubMedCrossRefGoogle Scholar
  32. 32.
    Song ES, Linsk R, Olson CA, McMillan M, Goodenow RS (1988) Allospecific cytotoxic T lymphoocytes recognize an H-2 peptide in the context of a murine major histocompatibility complex class I molecule. Proc Natl Acad Sci USA 85:1927–1931PubMedCrossRefGoogle Scholar
  33. 33.
    Falk K, Rötzschke O, Deres K, Metzger J, Jung G, Rammensee H-G (1991) Identification of naturally processed viral nonapeptides allows their quantification in infected cells and suggests an allele-specific T cell epitope forecast. J Exp Med 174:425–434PubMedCrossRefGoogle Scholar
  34. 34.
    Falk K, Rötzschke O, Stevanovic S, Jung G, Rammensee H-G (1991) Allele-specific motifs revealed by sequencing of self-peptides eluted from MHC molecules. Nature 351:290–296PubMedCrossRefGoogle Scholar
  35. 35.
    Jardetzky TS, Lane WS, Robinson RA, Madden DR, Wiley DC (1991) Identification of self peptides bound to purified HLA-B27. Nature 353:326–329PubMedCrossRefGoogle Scholar
  36. 36.
    Saper MA, Bjorkman PJ, Wiley DC (1991) Refined structure of the human histocompatibility antigen HLA-A2 at 2.6A resolution. J Mol Biol 219:277–319PubMedCrossRefGoogle Scholar
  37. 37.
    Rötzschke O, Falk K, Stevanovic S, Jung G, Waiden P, Rammensee HG (1991) Exact prediction of a natural T cell epitope. Eur J Immunol 21:2891–2894PubMedCrossRefGoogle Scholar
  38. 38.
    Pamer EG, Harty JT, Bevan MJ (1991) Precise prediction of a dominant class I MHC-restricted epitope of Listeria monocytogenes. Nature 353:852–855PubMedCrossRefGoogle Scholar
  39. 39.
    Driscoll J, Finley D (1992) A controlled breakdown: antigen processing and the turnover of viral proteins. Cell 68:823–825PubMedCrossRefGoogle Scholar
  40. 40.
    Powis SJ, Townsend ARM, Deverson EV, Bastin J, Butcher GW, Howard JC (1991) Restoration of antigen presentation to the mutant-cell line RMA-s by an MHC-linked transporter. Nature 354:528–531PubMedCrossRefGoogle Scholar
  41. 41.
    Falk K, Rötzschke O, Rammensee H-G (1990) Cellular peptide composition governed by major histocompatibility complex class I molecules. Nature 348:248–251PubMedCrossRefGoogle Scholar
  42. 42.
    Wallny H-J, Rötzschke O, Falk K, Hämmerling G, Rammensee H-G (1992) Gene transfer experiments imply instructive role of MHC class I molecules in cellular peptide processing. Eur J Immunol 22:655–659PubMedCrossRefGoogle Scholar
  43. 43.
    Griem P, Wallny H-J, Falk K, Rötzschke O, Arnold B, Schönrich G, Hämmerling G, Rammensee H-G (1991) Uneven tissue distribution of minor histocompatibility proteins versus peptides is caused by MHC expression. Cell 65:633–640PubMedCrossRefGoogle Scholar
  44. 44.
    Rötzschke O, Falk K, Rammensee H-G (1992) Specificity of antigen processing for MHC class I restricted presentation is conserved between mouse and man. Eur J Immunol 22: 1323–1326PubMedCrossRefGoogle Scholar
  45. 45.
    Schild H, Rötzschke O, Kaibacher H, Rammensee H-G (1990) Limit of T cell tolerance to self proteins by peptide presentation. Science 247:1587–1598PubMedCrossRefGoogle Scholar
  46. 46.
    Falk K, Rötzschke O, Rammensee H-G (1992) A self peptide naturally presented by both H-2Kb and H-2Kbml molecules demonstrates MHC restriction of self tolerance at the molecular level. Int Immunol 4:321–325PubMedCrossRefGoogle Scholar
  47. 47.
    Groves E, Singer A (1983) Role of the H-2 complex in the induction of T cell tolerance to self minor histocompatibility antigens. J Exp Med 158:1483–1497PubMedCrossRefGoogle Scholar
  48. 48.
    Matzinger P, Zamoyska R,Waldmann H (1984) Self tolerance is H-2-restricted. Nature 308:738–741PubMedCrossRefGoogle Scholar
  49. 49.
    Rammensee HG, Bevan MJ (1984) Evidence from in vitro studies that tolerance to self antigens is MHC-restricted. Nature 308:741–744PubMedCrossRefGoogle Scholar
  50. 50.
    Vitiello A, Potter TA, Sherman LA (1990) The role of β2-microglobulin in peptide binding by class I molecules. Science 250:1423–1426PubMedCrossRefGoogle Scholar
  51. 51.
    Christinck ER, Luscher MA, Barber BH, Williams DB (1991) Peptide binding to class I MHC on living cells and quantitation of complexes required for CTL lysis. Nature 352:67–70PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • H. G. Rammensee

There are no affiliations available

Personalised recommendations