Application of Finite-Size Scaling to Phase Transitions and Localization-Delocalization Transitions

  • Y. Okabe
  • M. Kikuchi
  • K. Niizeki
Conference paper
Part of the Springer Proceedings in Physics book series (SPPHY, volume 75)

Abstract

The computational studies of phase transitions using the finite-size scaling analysis are reported. First, we investigate the three-state Potts model by use of a Monte Carlo simulation. The finite-size scaling and the Monte Carlo renormalization group method are used to study the critical properties of the antiferromagnetic Potts model. The system of a random mixture of the ferromagnetic and antiferromagnetic couplings is also discussed. Next, the Ising model on the three-dimensional icosahedral quasilattice is studied. Investigating the critical phenomena on the basis of finite-size scaling, we confirm that the critical exponents are universal among regular lattices and quasilattices. Lastly, we show that the finite-size scaling analysis is also effective in analyzing the critical properties of the localization-derealization transition of the wave functions in quasi-periodic systems.

Keywords

Dinate 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M.E. Fisher, in Proc. Int. School of Physics ‘Enrico Fermi’, edited by M.S. Green, (Academic Press, New York, 1971), Vol. 51, p. 1.Google Scholar
  2. [2]
    M.N. Barber, in Phase Transitions and Critical Phenomena, edited by C. Domb and J.L. Lebowitz, (Academic Press, New York, 1983), Vol. 8, p. 146.Google Scholar
  3. [3]
    K. Binder, in Finite Size Scaling and Numerical Simulation, edited by V. Privman, (World Scientific, Singapore, 1990), p. 173.Google Scholar
  4. [4]
    J.-S. Wang, R.H. Swendsen and R. Kotecky, Phys. Rev. B42, 2465 (1990).ADSGoogle Scholar
  5. [5]
    M. Scheucher, J.D. Reger, K. Binder and A.P. Young, Phys. Rev. B42, 6881 (1990).ADSGoogle Scholar
  6. [6]
    M. Aizenman and J. Wehr, Phys. Rev. Lett. 62, 2503 (1989).CrossRefADSMathSciNetGoogle Scholar
  7. [7]
    K. Hui and N. Berker, Phys. Rev. Lett. 62, 2507 (1989).CrossRefADSGoogle Scholar
  8. [8]
    G. Bhanot, D. Duke and R. Salvador, Phys. Rev. B33, 7841 (1986);ADSGoogle Scholar
  9. [8a]
    G. Bhanot, D. Duke and R. Salvador J. Stat. Phys. 44, 985 (1986).CrossRefMATHADSGoogle Scholar
  10. [9]
    M. Kikuchi and Y. Okabe, J. Magn. Magn. Mat. 104–107, 209 (1992).Google Scholar
  11. [10]
    M. Kikuchi and Y. Okabe, J. Phys. Soc. Jpn., to appear.Google Scholar
  12. [11]
    I. Ono, Prog. Theor. Phys. Suppl. 87, 102 (1986).CrossRefADSGoogle Scholar
  13. [12]
    M. N. Barber and W. Selke, J. Phys. A15, L617 (1982).ADSGoogle Scholar
  14. [13]
    M. Kikuchi and Y. Okabe, Prog. Theor. Phys. 75, 192 (1986)CrossRefADSGoogle Scholar
  15. [13a]
    M. Kikuchi and Y. Okabe, Prog. Theor. Phys.78, 540 (1987)CrossRefADSGoogle Scholar
  16. [13b]
    M. Kikuchi and Y. Okabe Phys. Rev. B35, 5382 (1987).ADSGoogle Scholar
  17. [14]
    Y. Ueno, G. Sun and I. Ono, J. Phys. Soc. Jpn. 58, 1162 (1989).CrossRefADSGoogle Scholar
  18. [15]
    C. Godrèche, J.M. Luck and H. Orland, J. Stat. Phys. 45, 777 (1986).CrossRefADSGoogle Scholar
  19. [16]
    V. E. Korepin, Commun. Math. Phys. 110, 157 (1987).CrossRefMATHADSMathSciNetGoogle Scholar
  20. [17]
    T. C. Choy, Int. J. Mod. Phys. B2, 49 (1988).ADSMathSciNetGoogle Scholar
  21. [18]
    Y. Okabe and K. Niizeki, J. Phys. Soc. Jpn. 57 16 (1988)CrossRefADSGoogle Scholar
  22. [18a]
    Y. Okabe and K. Niizeki, J. Phys. Soc. Jpn. 57 1536 (1988).CrossRefADSGoogle Scholar
  23. [19]
    S. M. Bhattacharjee, J. S. Ho and J. A. Y. Johnson, J. Phys. A20, 4439 (1987).ADSMathSciNetGoogle Scholar
  24. [20]
    G. Amarendra, G. Ananthakrishna and G. Athithan, Europhys. Lett. 5, 181 (1988).CrossRefADSGoogle Scholar
  25. [21]
    J. Oitmaa, M. Aydin and M. J. Johnson, J. Phys. A23, 4537 (1990).ADSGoogle Scholar
  26. [22]
    R. Abe and T. Dotera, J. Phys. Soc. Jpn. 58, 3219 (1989).CrossRefADSMathSciNetGoogle Scholar
  27. [23]
    T. Dotera and R. Abe, J. Phys. Soc. Jpn. 59, 2064 (1989).CrossRefADSMathSciNetGoogle Scholar
  28. [24]
    Y. Okabe and K. Niizeki, in Quasicrystals, edited by T. Fujiwara and T. Ogawa, (Springer, Berlin, 1990), p. 206.CrossRefGoogle Scholar
  29. [25]
    Y. Okabe and K. Niizeki, J. Phys. A20, L733 (1990).ADSGoogle Scholar
  30. [26]
    V. Elser and C. L. Henley, Phys. Rev. Lett. 55, 2883 (1985).CrossRefADSGoogle Scholar
  31. [27]
    J.B. Sokoloff, Phys. Reports 126, 189 (1985).CrossRefADSGoogle Scholar
  32. [28]
    H. Hiramato and M. Kohmoto, Int. J. Mod. Phys., to appear.Google Scholar
  33. [29]
    S. Aubry and G. Andre, Ann. Israel Phys. Soc. 3, 133 (1980).MathSciNetGoogle Scholar
  34. [30]
    A.P. Siebesma and L. Pietronero, Europhys. Lett. 4, 597 (1987).CrossRefADSGoogle Scholar
  35. [31]
    H. Hiramato and M. Kohmoto, Phys. Rev. B40, 8225 (1989).ADSGoogle Scholar
  36. [32]
    D.J. Thouless and Q. Niu, J. Phys. A16, 1911 (1983).ADSGoogle Scholar
  37. [33]
    Y. Hashimoto, K. Niizeki and Y. Okabe, J. Phys. A, to appear.Google Scholar
  38. [34]
    D.J. Thouless (1974). Phys. Reports 13, 93 (1974).CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Y. Okabe
    • 1
  • M. Kikuchi
    • 2
  • K. Niizeki
    • 1
  1. 1.Department of PhysicsTohoku UniversitySendaiJapan
  2. 2.Department of PhysicsOsaka UniversityToyonakaJapan

Personalised recommendations