Skip to main content

Low Energy Excitations and Desorption Dynamics from Oxide Surfaces

  • Conference paper
Desorption Induced by Electronic Transitions DIET V

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 31))

Abstract

The interaction of photons with solid surfaces initiates processes which may be classified into various categories [1,2]. We will be concerned mainly with photochemical processes, including desorption of participating molecules. The measurement of the distribution of energy into translational and internal degrees of freedom possibly provides us with new insights into the mechanisms underlying the desorption after photoabsorption. In order to study the simplest cases first, various groups have studied photodesorption of NO and CO from metal and metaloxide surfaces [3–17]. A whole range of photon energies has been used so far. It appears that if we exclude photoinduced thermal desorption, the cross sections for photodesorption are orders of magnitude larger on weakly oxidized metal surfaces and in particular on oxide surfaces than on metal surfaces. Qualitatively, several effects are responsible for this difference in our view.

  1. i)

    The electronic structure of the substrates is considerably different in the sense that a metal does not exhibit a band gap while an oxide often does. Energy that is dissipated into the substrate must exceed the gap energy in the case of an oxide unless there are defect states filling the gap. For a metal energy in any small quantity may be dissipated into the solid because excitation of electron-hole pairs of low energy is always possible. The probability of such excitations depends of course on the density of states at the Fermi energy. Metals with low density of states, such as Cu, Ag, Au, etc. should have a smaller probability for electron-hole-pair-creation.

  2. ii)

    The degree of localization of the electronic charge distribution is typical for an oxide, while delocalization is a prototype metal property. This leads in the case of an oxide to a longer lifetime of the excited state. Consequently, the probability to escape the surface is larger for photodesorption from oxide surfaces due to the possibility to accumulate translational energy to leave the surface [13–15].

  3. iii)

    A weak molecule-surface interaction will favour localization of the excitation on the molecule and thus increase the photodesorption probability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature

  1. X.L. Zhou, X.-Y. Zhu, J.M. White, Surf.Sci.Rep. 13, 77 (1991).

    Article  ADS  Google Scholar 

  2. W. Ho, Desorption Induced by Electronic Transitions, DIET IV, Springer Ser.Surf.Sci 19, 48, Berlin, Springer-Verlag (1990).

    Google Scholar 

  3. A. Mödi, T. Gritsch, F. Budde, T.J. Chuang, G.Ertl, Phys.Rev.Lett. 57, 384 (1986).

    Article  ADS  Google Scholar 

  4. A.R. Burns, E.B. Stechel, E.R. Jennison, Phys.Rev.Lett. 58, 250 (1987).

    Article  ADS  Google Scholar 

  5. E.B. Stechel, D.R. Jennison, A.R. Burns, Desorption Induced by Electronic Transitions, DIET III, Springer Ser.Surf.Sci. 13, 137, Berlin, Springer-Verlag (1988); D.R. Jennison E.B Stechel, A.R. Burns, ibid., p. 167.

    Google Scholar 

  6. D. Weide, P. Andresen, H.-J. Freund, Chem.Phys.Lett. 136, 106 (1987).

    Article  ADS  Google Scholar 

  7. F. Budde, A.V. Hamza, P.M. Ferm, G. Ertl, D. Weide, P. Andresen, H.-J. Freund, Phys.Rev.Lett. 60, 1518 (1988).

    Article  ADS  Google Scholar 

  8. W.C. Natzle, D. Padowitz, S.J. Sibener, J.Chem.Phys. 88, 7975 (1988).

    Article  ADS  Google Scholar 

  9. E. Hasselbrink, S. Jakubith, S. Nettesheim, M. Wolf, A. Cassuto, G. Ertl, J Chem Phys 92, 3154 (1990).

    Article  ADS  Google Scholar 

  10. M. Wolf, E. Hasselbrink, J.M. White, G. Ertl, J.Chem.Phys. 93, 5327 (1990).

    Article  ADS  Google Scholar 

  11. R. Schwarzwald, A. Modi, T.J. Chuang, Surf.Sci. 242, 437 (1991).

    Article  ADS  Google Scholar 

  12. K. Mase, S. Mizuno, Y. Achiba, Y. Murata, Surf.Sci. 242, 444 (1991).

    Article  ADS  Google Scholar 

  13. J.W. Gadzuk, L.J. Richter, S.A. Buntin, D.S. King, R.R. Cavanagh, Surf.Sci. 235, 317 (1990).

    Article  ADS  Google Scholar 

  14. Th. Mull, H. Kuhlenbeck, G. Odörfer, R. Jaeger, C. Xu, B. Baumeister, M. Menges, G. Illing, H.-J. Freund, D. Weide, P. Andresen, Desorption Induced by Electronic Transitions, DIET IV, Springer Ser.Surf.Sci. 19, 169, Berlin, Springer-Verlag (1990).

    Google Scholar 

  15. B. Baumeister, M. Menges, T. Mull, H.-J. Freund, D. Weide, P. Andresen, Proceedings of the Symposium on Surface Science, La Plagne, France, p. 147 (1990).

    Google Scholar 

  16. Th. Mull, B. Baumeister, M. Menges, H.-J. Freund, D. Weide, C. Fischer, P. Andresen J.Chem.Phys., 96, 7108 (1992).

    Article  ADS  Google Scholar 

  17. J. Yoshinobu, T.H. Ballinger, Z. Xu, H.J. Jansch, M. I. Zaki, J. Xu, J.T. Yates Jr., Surf.Sci 255, 295 (1991).

    Article  ADS  Google Scholar 

  18. M. Asscher, F.M. Zimmermann, L.L. Springsteen, PL. Houston, W. Ho, submitted.

    Google Scholar 

  19. Th. Mull, Ph. D. Thesis, Bochum (1991).

    Google Scholar 

  20. H. Kuhlenbeck, G. Odörfer, R. Jaeger, G. Illing, M. Menges, Th. Mull, H.-J. Freund, M. Pohlchen, V. Staemmler, S. Witzel, C. Scharfschwerdt, K. Wennemann, T. Liedtke, M. Neumann, Phys.Rev. B 43, 1969 (1991).

    ADS  Google Scholar 

  21. E. Escaiona Platero, C. Coluccia, A. Zecchina, Langmuir 1, 407 (1985).

    Article  Google Scholar 

  22. M. Bäumer, D. Cappus, H. Kuhlenbeck, H.-J. Freund, G. Wilhelmi, A. Brodde H. Neddermeyer, Surf.Sci. 253, 116 (1991).

    Article  Google Scholar 

  23. M. Bäumer, D. Cappus, G. Illing, H. Kuhlenbeck, H.-J. Freund, J.Vac.Sci.Technol. A 10, 1 (1992).

    Google Scholar 

  24. J.H. Bechtel, J.Appl.Phys. 46, 1585 (1975).

    Article  ADS  Google Scholar 

  25. D. Menzel, R. Gomer, J.Chem.Phys. 41, 3311 (1964).

    Article  ADS  Google Scholar 

  26. P.A. Redhead, Can.J.Phys. 42, 886 (1964).

    Article  ADS  Google Scholar 

  27. U. Landman, Israel J.Chem. 22, 339 (1982).

    Google Scholar 

  28. J.E. Smedley, G.C. Corey, M.H. Alexander, J.Chem.Phys. 87, 3218 (1987).

    Article  ADS  Google Scholar 

  29. K.P. Huber, G. Herzberg, “Molecular spectra and molecular structure. Vol. 4; Constants of diatomic molecules”, Van Nostrand Reinhold Company, New York 1979.

    Google Scholar 

  30. M. Menges, Diplomarbeit, Bochum 1990.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Menges, M. et al. (1993). Low Energy Excitations and Desorption Dynamics from Oxide Surfaces. In: Burns, A.R., Stechel, E.B., Jennison, D.R. (eds) Desorption Induced by Electronic Transitions DIET V. Springer Series in Surface Sciences, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78080-6_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78080-6_44

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78082-0

  • Online ISBN: 978-3-642-78080-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics