Advertisement

Computer Simulation of DIET Processes: Molecular Dynamics with Electronic Transitions

  • J. C. Tully
  • M. Head-Gordon
Conference paper
Part of the Springer Series in Surface Sciences book series (SSSUR, volume 31)

Abstract

We describe our progress towards developing self-consistent methods for incorporating the effects of electronic transitions in molecular dynamics simulations. We employ a “surface-hopping” technique to allow switches between potential energy hypersurfaces when localized electronic state changes such as charge transfer occur. To describe dynamics at metal surfaces, we introduce electronic frictions and fluctuating forces to account for energy dissipation and excitation via electron-hole pair transitions. We present preliminary new results for CO on Cu(100) and discuss implications of our results on the possible mechanisms of desorption induced via rapid heating of conduction electrons.

Keywords

Electronic Transition Friction Matrix Pair Transition Pair Excitation Potential Energy Hypersurface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    See, for example, N. H. Tolk, M. M. Traum, J. C. Tully and T. E. Madey, Eds., Desorption Induced by Electronic Transitions, DIET I, (Springer-Verlag, Berlin, 1983).Google Scholar
  2. See especially the chapters by J. W. Gadzuk, D. R. Jennison, J. C. Tully, R. Gomer, D. Menzel, P. J. Feibelman, D. E. Ramaker and W. Brenig. See also, J. W. Gadzuk, in Desorption Induced by Electronic Transitions, DIET IV, G. Betz and P. Varga, Eds., (Springer-Verlag, Berlin, 1990), p.2.Google Scholar
  3. J. W. Gadzuk, Phys. Rev. B44, 13466 (1991).ADSGoogle Scholar
  4. 2.
    D. Menzel and R. Gomer, J. Chem. Phys. 41, 3311 (1964).CrossRefADSGoogle Scholar
  5. P. E. Redhead, Can. J.Phys. 42, 886(1964).CrossRefADSGoogle Scholar
  6. 3.
    J. C. Tully, J. Chem. Phys.93, 1061 (1990).CrossRefADSGoogle Scholar
  7. J. C. Tully, Int. J. Quantum Chem. 25, 299(1991).CrossRefGoogle Scholar
  8. 4.
    J. C. Tully and R. K. Preston, J. Chem. Phys. 55, 562 (1971).CrossRefADSGoogle Scholar
  9. J. C. Tully, in Dynamics of Molecular Collisions, Part B, edited by W. H. Miller (Plenum, New York, 1976), p. 217.Google Scholar
  10. W. H. Miller and T. R George, J. Chem. Phys. 56, 5637 (1972).CrossRefADSGoogle Scholar
  11. F. J. Webster, J. Schnitker, M. S. Friedrichs, R. A. Friesner and P. J. Rossky, Phys. Rev. Lett. 66, 3172 (1991).CrossRefADSGoogle Scholar
  12. 5.
    P. Nordlander, in Desorption Induced by Electronic Transitions, DIET V, edited by A. R. Burns, E. B. Stechel and D. R. Jennison, this volume; See also, P. Nordlander and J. C. Tully, Phys. Rev. Lett. 61, 990 (1988).Google Scholar
  13. P. Nordlander and J. C. Tully, Phys. Rev. B42, 5564 (1990).ADSGoogle Scholar
  14. 6.
    J. A. Prybyla, T. F Heinz, J. A. Misewich, M. M. Loy and J. H. Glownia, Phys. Rev. Lett. 64, 1537 (1990).CrossRefADSGoogle Scholar
  15. R Budde, T. F. Heinz, M. M. Loy, J. A. Misewich, R de Rougemont and H. Zacharias, Phys. Rev. Lett. 66, 3024 (1991).CrossRefADSGoogle Scholar
  16. 7.
    J. A. Prybyla, H. W. K. Tom and G. D. Aumiller, Phys. Rev. Lett. 68, 503 (1992).CrossRefADSGoogle Scholar
  17. 8.
    W. Schaich, Solid State Commun. 15, 357 (1974).CrossRefADSGoogle Scholar
  18. E. G. d’Agliano, P. Kumar, W. Schaich and H. Suhl, Phys. Rev. B11, 2122 (1975).ADSGoogle Scholar
  19. A. Nourtier, J. Phys. (Paris) 38, 479 (1977).CrossRefGoogle Scholar
  20. K. L. Sebastian, Phys. Rev. B31, 6976 (1981).ADSGoogle Scholar
  21. B. N. J. Persson and W. L. Schaich, J. Phys. C: Solid State Phys. 14, 5583 (1981).CrossRefADSGoogle Scholar
  22. K. M. Leung, G. Schon, P. Rudolph and H. Metiu, J. Chem. Phys. 81, 3307 (1984).CrossRefADSGoogle Scholar
  23. A. Okiji and H. Kasai, Phys. Rev. B38, 8102 (1988).ADSGoogle Scholar
  24. 9.
    M. Head-Gordon and J. C. Tully, unpublished.Google Scholar
  25. 10.
    W. H. Miller and C. W. McCurdy, J. Chem. Phys. 69, 5163 (1978).CrossRefADSGoogle Scholar
  26. D. A. Micha, J. Chem. Phys. 78, 7139 (1983).CrossRefADSMathSciNetGoogle Scholar
  27. Z. Kirson, R. B. Gerber, A. Nitzan and M. A. Ratner, Surf. Sci. 137, 527 (1984).CrossRefADSGoogle Scholar
  28. S.-I. Sawada, A. Nitzan and H. Metiu, Phys. Rev. B32, 851 (1985).ADSGoogle Scholar
  29. 11.
    M. Head-Gordon and J. C. Tully, J. Chem. Phys. 96, 3939 (1992).CrossRefADSGoogle Scholar
  30. M. HeadGordon and J. C. Tully, Phys. Rev. B in press.Google Scholar
  31. 12.
    A similar expression has been derived by B. Hellsing and M. Persson, Physica Scripta 29, 360 (1984).CrossRefADSGoogle Scholar
  32. 13.
    C. Lim and J. C. Tully, J. Chem. Phys. 85, 7423 (1986).CrossRefADSGoogle Scholar
  33. 14.
    A. R. Burns, E. B. Stechel and D. R. Jennison, Phys. Rev. Lett. 58, 250 (1987).CrossRefADSGoogle Scholar
  34. E. B. Stechel, D. R. Jennison and A. R. Burns, in Desorption Induced by Electronic Transitions, DIET III, R. H. Stulen and M. L. Knotek, Eds., (Springer-Verlag, Berlin, 1987), p. 136.Google Scholar
  35. 15.
    J. A. Misewich, T. R Heinz and D. M. Newns, unpublished.Google Scholar
  36. 16.
    B. N. J. Persson and M. Persson, Solid State Commun. 36, 175 (1980).CrossRefADSGoogle Scholar
  37. P. Avouris and B. N. J. Persson, J. Phys. Chem. 88, 837 (1984).CrossRefGoogle Scholar
  38. T. T. Rantala and A. Rosen, Phys. Rev. 34, 838 (1986).CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • J. C. Tully
    • 1
  • M. Head-Gordon
    • 1
  1. 1.AT&T Bell LaboratoriesMurray HillUSA

Personalised recommendations