Skip to main content

Protein interaction with ice

  • Chapter
Book cover EJB Reviews

Part of the book series: EJB Reviews ((EJB REVIEWS,volume 1992))

  • 139 Accesses

Abstract

Water is essential to all living cells. It serves as a medium for biological reactions, solute transport and interaction, and regulation of intracellular pH. It is also one of the reactants in many biochemical reactions, and contributes to the stabilization of various macromolecular structures. Any significant deviation on the accessibility of water due to dehydration, dessication and the alteration of its physical state from aqueous phase to ice crystal will pose a severe threat to the normal function and survival of organisms [1]. For many organisms, it is both desirable and important to have the ability to counteract or minimize these threats. The production of specific protein molecules to prevent the loss of water or to inhibit extracellular ice crystal growth are the better known examples.

Many organisms have evolved novel mechanisms to minimize freezing injury due to extracellular ice formation. This article reviews our present knowledge on the structure and mode of action of two types of proteins capable of ice interaction. The antifreeze proteins inhibit ice crystal formation and alter ice growth habits. The ice nucleation proteins, on the other hand, provide a proper template to stimulate ice growth. The potential applications of these proteins in different industries are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

INA:

ice nucleation activators

INP:

ice nucleation proteins

AFP:

antifreeze proteins or polypeptides

AFGP:

antifreeze glycoproteins

f :

cumulative ice nucleation frequency

z :

number of cells

References

  1. Beall, P. (1983) Cryobiology 20, 324–334.

    Article  PubMed  CAS  Google Scholar 

  2. DeVries, A. C. (1983) Annu. Rev. Physiol. 45, 245–260.

    Article  PubMed  CAS  Google Scholar 

  3. Feeney, R. E. & Burcham, T. S. (1986) Annu. Rev. Biophys. 15, 59–78.

    Article  CAS  Google Scholar 

  4. Davies, P. L. & Hew, C. L. (1990) FASEB J. 4, 2460–2468.

    PubMed  CAS  Google Scholar 

  5. Duman, J. & Horwath, K. (1983) Annu. Rev. Physiol. 45, 261–270.

    Article  PubMed  CAS  Google Scholar 

  6. Lindow, S. E. (1983) Annu. Rev. Phytopathol. 21, 361–384.

    Article  Google Scholar 

  7. Wolber, P. & Warren, G. (1989) Trends Biochem. Sci. 14, 179–182.

    Article  PubMed  CAS  Google Scholar 

  8. Ananthanarayanan, V. S. (1989) Life Chemistry Reports 7, 1–32.

    CAS  Google Scholar 

  9. Fletcher, N. (1970) The chemical physics of ice, pp. 73–103, Cambridge University Press, Cambridge.

    Book  Google Scholar 

  10. Franks, F. (1972) in Water, a comprehensive treatise (Franks, F; vol. 1, pp. 115–151, Plenum Press, New York.

    Google Scholar 

  11. Duman, J. G. (1990) Cryo ‘90, Abstr. 149, Soc. for Cryobiology/Cryogenic Soc. of America, Binghampton NY.

    Google Scholar 

  12. Scholander, P. F. & Maggert, J. E. (1971) Cryobiology 8, 371–374.

    Article  PubMed  CAS  Google Scholar 

  13. Yang, D. S. C., Sax, M., Chakrabartty, A. & Hew, C. L. (1988) Nature 333, 232–237.

    Article  PubMed  CAS  Google Scholar 

  14. Patterson, J. L. & Duman, J. G. (1982) J. Exp. Zool. 219, 381–384.

    Article  CAS  Google Scholar 

  15. Levitt, J. (1980) Responses of plants to environmental stresses, vol. 1, Academic Press, Orlando FL.

    Google Scholar 

  16. Kurkela, S. & Franck, M. (1990) Plant Mol. Biol. 15, 137–144.

    Article  PubMed  CAS  Google Scholar 

  17. Raymond, J. A. & DeVries, A. L. (1972) Cryobiology 9, 541–547.

    Article  PubMed  CAS  Google Scholar 

  18. Tomimatsu, Y., Scherer, J. R., Yeh, Y. & Feeney, R. E. (1976) J. Biol. Chem. 251, 2290–2298.

    PubMed  CAS  Google Scholar 

  19. Kerr, W. L., Osuga, D. T., Feeney, R. E. & Yeh, Y. (1987) J. Crystal Growth 85, 449–452.

    Article  CAS  Google Scholar 

  20. Brown, R. A., Yeh, Y., Nurcham, T. S. & Feeney, R. E. (1985) Biopolymers 24, 1265–1270.

    Article  PubMed  CAS  Google Scholar 

  21. Raymond, J. A. & DeVries, A. L. (1977) Proc. Natl Acad. Sci. USA 74, 2589–2593.

    Article  PubMed  CAS  Google Scholar 

  22. Knight, C. A., Cheng, C. C. & DeVries, A. L. (1991) Biophys. J. 59, 409–418.

    Article  PubMed  CAS  Google Scholar 

  23. Chakrabartty, A., Yang, D. S. C. & Hew, C. L. (1989) J. Biol. Chem. 264, 11313–11316.

    PubMed  CAS  Google Scholar 

  24. Cabrera, N. & Vermilyea, D. A. (1958) in Growth and perfection of crystals (Doremus, R. H., Roberts, B. W. & Turnbull, D., eds) pp. 393–408, John Wiley & Sons, New York.

    Google Scholar 

  25. Burcham, T. S., Osuga, D. T., Yeh, Y. & Feeney, R. E. (1986) J. Biol. Chem. 261, 6390–6397.

    PubMed  CAS  Google Scholar 

  26. DeVrkt, A. L. & Lin, Y. (1977) Biochim. Biophys. Acta 495, 388–392.

    Google Scholar 

  27. Gibson, M. K., Sharp, K. A. & Honig, B. H. (1988) J. Comp. Chem. 9, 327–335.

    Article  Google Scholar 

  28. Chakrabartty, A., Ananthanarayanan, V. S. & Hew, C. L. (1989) J. Biol. Chem. 264, 11307–11312.

    PubMed  CAS  Google Scholar 

  29. Murphy, D. J. (1983) Annu. Rev. Physiol. 45, 289–299.

    Article  PubMed  CAS  Google Scholar 

  30. Gross, D. C., Proebstring, E. L. & MacCrindle-Zimmerman, H. (1988) Plant. Physiol. 88, 915–922.

    Article  PubMed  CAS  Google Scholar 

  31. Kieft, T. L. (1988) Appl. Environ. Microbiol. 54, 1678–1681.

    PubMed  CAS  Google Scholar 

  32. Kieft, T. L. & Ruscetti, T. (1990) J. Bacteriol. 172, 3519–3523.

    PubMed  CAS  Google Scholar 

  33. Wolaczyk, J. P., Storey, K. B. & Baust, J. G. (1988) Cryobiology 25, 522.

    Article  Google Scholar 

  34. Fall, R. & Scnell, R. C. (1985) J. Marine Res. 43, 257–265.

    Article  Google Scholar 

  35. Amy, D. C., Lindow, S. E. & Upper, C. D. (1976) Nature 262, 282–284.

    Article  Google Scholar 

  36. Warren, G. J., Lindemann, J., Suslow, T. V. & Green, R. L. (1987) in Applications of biotechnology to agricultural chemistry (Le Baron, H., Mumma, R., Honeycutt, R. & Duessing, J., eds) pp. 215–217, American Chemical Society, Washington DC.

    Chapter  Google Scholar 

  37. Suslow, T. (1989) Trends Biochem. Sci. 14, 180.

    Google Scholar 

  38. Vali, G. (1971) J. Atmos. Sci. 28, 402–409.

    Article  Google Scholar 

  39. Govindarajan, A. G. & Lindow, S. E. (1988) Proc. Natl Acad. Sci. USA 85, 1334–1338.

    Article  PubMed  CAS  Google Scholar 

  40. Yankofsky, S. A., Levin, Z., Bertold, T. & Sandlerman, N. (1981) Appl. Meteorol. 20, 1013–1019.

    Article  Google Scholar 

  41. Turner, M. A., Arellano, F. & Kozloff, L. M. (1990) J. Bacteriol. 172, 2521–2526.

    PubMed  CAS  Google Scholar 

  42. Zachariassen, K. E. & Hammel, H. T. (1988) Cryobiology 25, 143–147.

    Article  Google Scholar 

  43. Orser, C., Staskawicz, B. J., Panopoulos, N. J., Dahlbeck, D. & Lindow, S. E. (1985) J. Bacteriol. 164, 359–366.

    PubMed  CAS  Google Scholar 

  44. Corotto, L. V., Wolber, P. K. & Warren, G. J. (1986) EMBO J. 5, 231–236.

    PubMed  CAS  Google Scholar 

  45. Abe, K., Watabe, S., Emori, Y., Watanabe, M. & Arai, S. (1989) FEBS Lett. 258, 297–300.

    Article  PubMed  CAS  Google Scholar 

  46. Warren, G. J. & Wolber, P. K. (1987) Cryo Lett. 8, 204–215.

    Google Scholar 

  47. Mizuno, H. (1989) Protein Struct. Funct. Genet. 5, 47–65.

    Article  CAS  Google Scholar 

  48. Govindarajan, A. G. & Lindow, S. E. (1988) J. Biol. Chem. 263, 9333–9338.

    PubMed  CAS  Google Scholar 

  49. Phelps, P., Giddings, T. H., Prochoda, M. & Fall, R. (1986) J. Bacteriol. 167, 496–502.

    PubMed  CAS  Google Scholar 

  50. Kozloff, L. M., Lute, M. & Westaway, D. (1984) Science 226, 845–846.

    Article  PubMed  CAS  Google Scholar 

  51. Burke, M. J. & Lindow, S. E. (1990) Cryobiology 27, 80–84.

    Article  Google Scholar 

  52. Southworth, M. W., Wolber, P. K. & Warren, G. J. (1988) J. Biol. Chem. 263, 15211–15216.

    PubMed  CAS  Google Scholar 

  53. Wolber, P. K., Deininger, C. A., Southworth, M. W., Vandekerckhove, J., Van Montagu, M. & Warren, G. J. (1986) Proc. Natl Acad. Sci. USA 83, 7256–7260.

    Article  PubMed  CAS  Google Scholar 

  54. Caple, G., Sands, D. C., Layton, R. G., Zucker, W. V. & Snider, J. R. (1986) J. Theor. Biol. 119, 37–45.

    Article  CAS  Google Scholar 

  55. Neven, L. G., Duman, J. G., Low, M. G., Sehl, L. C. & Castellino, F. J. (1989) J. Comp. Physiol. B 159, 71–82.

    Article  CAS  Google Scholar 

  56. Fletcher, G. L., Kao, M. H. & Fourney, R. M. (1986) Can. J. Zool. 64, 1897–1901.

    Article  CAS  Google Scholar 

  57. Davies, P. L., Hew, C. L., Shears, M. A. & Fletcher, G. L. (1990) in Transgenic models in medicine and agriculture (Church, R., ed.) pp. 141–161, Alan R. Liss, New York.

    Google Scholar 

  58. Georges, F., Saleem, M. & Cutler, A. J. (1990) Gene, 159–165.

    Google Scholar 

  59. Kenward, K. D., Davies, P. L., Downing, W. & McPherson, J. (1991) Can. Fed. Biol. Soc., Abstr. 530.

    Google Scholar 

  60. Cutler, A. J., Saleem, M., Kendall, E., Gusta, L. V., Georges, F. & Fletcher, G. L. (1989) J. Plant Physiol. 135, 351–354.

    CAS  Google Scholar 

  61. McKeown, R. L. & Warren, G. J. (1990) Cryo ’90, Abstr. 140, Soc. for Cryobiology/Cryogenic Soc. of America, Binghamton NY.

    Google Scholar 

  62. Rubinsky, B., Arav, A., Mattioli, M. & DeVries, A. L. (1990) Biochem. Biophys. Res. Comun. 173, 1369–1374.

    Article  CAS  Google Scholar 

  63. Lindemann, J. & Suslow, T. V. (1987) Phytopathology 77, 882–886.

    Article  Google Scholar 

  64. Kojima, T., Soma, T. & Oguri, N. (1988) Theriogenology 30, 1199–1208.

    Article  PubMed  CAS  Google Scholar 

  65. Watanabe, M. & Arai, S. (1987) Agric. Biol. Chem. 51, 557–563.

    Article  CAS  Google Scholar 

  66. Watanabe, M., Watanabe, J., Kumeno, K., Nakahama, N. & Arai, S. (1989) Agric. Biol. Chem. 53, 2731–2735.

    Article  CAS  Google Scholar 

  67. Warren, G. J. (1987) Biotechnol. Genet. Eng. Rev. 5, 107–135.

    CAS  Google Scholar 

  68. Worthy, W. (1990) Chem. Eng. News 8, 23–25.

    Google Scholar 

  69. Hsiao, K. C., Cheng, C. H., Fernandes, I. E., Detrich, W. H. & DeVries, A. L. (1990) Proc. Natl Acad. Sci. USA 87, 9265–9269.

    Article  PubMed  CAS  Google Scholar 

  70. Ewart, K. V. & Fletcher, G. L. (1990) Can. J. Zool. 68, 1652–1658.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Federation of European Biochemical Societies

About this chapter

Cite this chapter

Hew, C.L., Yang, D.S.C. (1993). Protein interaction with ice. In: EJB Reviews. EJB Reviews, vol 1992. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78046-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78046-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56414-0

  • Online ISBN: 978-3-642-78046-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics