Transformation in Chickpea (Cicer arietinum L.)

  • S. Riazuddin
  • T. Husnain
Part of the Biotechnology in Agriculture and Forestry book series (AGRICULTURE, volume 23)


Chickpea (Cicer arietinum L.), locally known as gram (Kala/Kabuli Chana), is an important crop of the Indo-Pak subcontinent. It is one of the major sources of dietary protein for the poor and average income families since exhorbitant prices of fish and poultry are beyond their financial means. In India where the majority of the population is vegetarian, pulses (Daal) form the staple food.


Ascochyta Blight Cicer Arietinum Lotus Corniculatus Pollen Embryogenesis Leaflet Explants 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Anonymous (1985) FAO studies vol 8. Food and Agricultural organization of the United Nations, RomeGoogle Scholar
  2. Bajaj YPS (1983) Production of normal seeds from plants regenerated from meristems of Arachis hypogaea and Cicer arietinum cryopreserved for 20 months. Euphytica 32:425–430CrossRefGoogle Scholar
  3. Barton KA, Whiteley HR, Yang NS (1987) Bacillus thuringiensis alpha-endotoxin expressed in transgenic Nicotiana tabaccum provides resistance to lepidopteran insects. Plant Physiol 35:1103–1109CrossRefGoogle Scholar
  4. FAO Report (1970) Amino acid contents for food and biological data on proteins food policy and food science. Nutrition Div, FAO, RomeGoogle Scholar
  5. Fischhoff DA, Bowdisch KS, Perlak FJ, Marrone PG, McCormick SH, Neidermeyer JG, Dean DA, Kusano-Kretzmer K, Mayer EJ, Rochester DE, Rogers SG, Fraley RT (1987) Insect tolerant transgenic tomato plants. Bio/Technol 5:807–813CrossRefGoogle Scholar
  6. Gosal SS, Bajaj YPS (1979) Establishment of callus cultures, and the induction of organogenesis in some grain legumes. Crop Improv 6:154–160Google Scholar
  7. Gosal SS, Bajaj YPS (1988) Pollen embryogenesis and chromosomal variation in anther culture of three food legumes - Cicer arietinum, Pisum sativum and Vigna mungo. SABRAO J 20:51–58Google Scholar
  8. Husnain T (1990) Transformation studies in the forage legume Onobrychis viciifolia. PhD Thesis, University of Nottingham, UKGoogle Scholar
  9. Maniatis T, Fritsch EF, Sambrook J (1982) Molecular cloning - a laboratory mannual. Cold Spring Harbor Laboratory, New YorkGoogle Scholar
  10. Mettler IJ (1987) A simple and rapid method for minipreparation of DNA from tissue cultured plant cells. Plant Mol Biol Rep 5:346–349CrossRefGoogle Scholar
  11. Nisbet GS, Webb KJ (1990) Transformation in legumes. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 10. Legumes and oilseed crops I. Springer, Berlin Heidelberg New York, pp 38–48Google Scholar
  12. Otten LABM, Schilperoot RA (1978) A rapid microscale method for the detection of lysopine and nopaline dehydrogenase activities. Biochem Biophys 527:497–520Google Scholar
  13. Petit A, Stougaard J, Kuhle A, Marcker KA, Tempe J (1987) Transformation and regeneration of the legume Lotus corniculatus: a system for molecular studies of symbiotic nitrogen fixation. Mol Gen Genet 207:245–250Google Scholar
  14. Puonti-Kaerlas J, Eriksson T, Engstrom P (1990) Production of transgenic pea (Pisum sativum L.) plants by Agrobacterium tumefaciens-mediated gene transfer. Theor Appl Genet 80:246–252Google Scholar
  15. Rao BG, Chopra VL (1989a) Regeneration of chickpea through somatic embryogenesis. J Plant Physiol 134:637–638Google Scholar
  16. Rao BG, Chopra VL (1989b) Regeneration of apical meristem, stem, nodes and cotyledons of chickpea. Indian J Pulses Res 2:20–24Google Scholar
  17. Rao BG, Chopra VL (1989c) Morphogenesis in callus culture of chickpea. Int Chickpea Newslett 21:7–11Google Scholar
  18. Rech EL, Gold TJ, Hammatt N, Mulligan BJ, Davey MR (1988) Agrobacterium rhizogenes mediated transformation of the wild soybean Glycine canescens and G. clandestine production of transgenic plants of G. canescens. J Exp Bot 39 (206): 1275–1285Google Scholar
  19. Rech EL, Golds TJ, Husnain T, Vainstein MH, Jones B, Hammatt N, Muttigan BJ, Davey MR (1989) Expression of chimeric kanamycin resistance gene introduced into the wild soybean Glycine canescens using a cointegriate Ri plasmid vector. Plant Cell Rep 8:33–36Google Scholar
  20. Riazuddin S, Malik T, Farooqi H, Haider T (1988) Transformation of chickpea by Agrobacterium tumefaciens and A. rhizogenes. Genome 30:478 (Abstr)Google Scholar
  21. Simpson RB, Spielmann A, Margossian L, McKnight TD (1986) A disarmed binary vector from Agrobacterium tumefaciens functions in Agrobacterium rhizogenes. Plant Mol Biol 6:403–415Google Scholar
  22. Spano L, Mariotti D, Pezzotti M, Damiani F, Arcioni S (1987) Hairy root transformation in alfalfa (Medicago satvia L.) Theor Appl Genet 73: 523–530CrossRefGoogle Scholar
  23. Srinivasan M, Gupta N Chopra VL (1988) Agrobacterium mediated transformation of chickpea. Int Chickpea Newslett 19:2–3Google Scholar
  24. Stougaard J, Abildsten D, Marcker KA (1987) The Agrobacterium rhizogenes pRi TL-DNA segment as a gene vector system for transformation of plants. Mol Gen Gene 207:251–255CrossRefGoogle Scholar
  25. Sukhapinda K, Spivey R, Shahin EA (1987) Ri Plasmid as a helper for introducing vector DNA into alfalfa plants. Plant Mol Biol 8:209–216CrossRefGoogle Scholar
  26. Vaeck M, Reynaert A, Hofte H, Jansens S, De Beuckeleer M, Dean C, Zabeau M, Van Montagu M, Leemans J (1987) Plants protected from insect attack. Nature 327:33–37CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • S. Riazuddin
  • T. Husnain
    • 1
  1. 1.Centre of Excellence in Molecular BiologyPunjab UniversityLahorePakistan

Personalised recommendations