Skip to main content

Transformation in Oilseed Rape (Brassica napus L.)

  • Chapter
Plant Protoplasts and Genetic Engineering IV

Part of the book series: Biotechnology in Agriculture and Forestry ((AGRICULTURE,volume 23))

Abstract

By virtue of its high oil content (40%) oilseed rape makes an important contribution to the world supply of edible oils. Rapeseed oil accounts for about 13% of the world production of edible oils, putting it in third place after soybean and palm. In addition, coarse colza meal, containing 38 to 45% high qualitiy protein, is the fourth most important source of protein animal feed (RFF 1986; Downey and Robbelen 1989). Thus, B. napus is an important target for crop improvement. The transfer of genes with agronomically relevant qualities is a desirable goal for improving the agronomic character of oilseed rape varieties by genetic engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • An G, Costa MA, Mitra A, Ha SB, Marton L (1988) Organ-specific and developmental regulation of the nopaline synthase promoter in transgenic tobacco plants. Plant Physiol 88:547–552

    Article  PubMed  CAS  Google Scholar 

  • An G, Costa MA, Ha SB (1990) Nopaline synthase promoter is wound inducible and auxin inducible. Plant Cell 2:225–233

    Article  PubMed  CAS  Google Scholar 

  • Barsby TL, Yarrow SA, Shepared JF (1986) A rapid and efficient alternative procedure for the regeneration of plants from hypocotyl protoplasts of Brassica napus. Plant Cell Rep 5:101–103

    Article  Google Scholar 

  • Boulter ME, Croy E, Simpson P, Shields R, Croy RRD, Shirsat AH (1990) Transformation of Brassica napus L. (oilseed rape) using Agrobacterium tumefaciens and Agrobacterium rhizogenes-a. comparison Plant Sei 70:91–99

    Article  CAS  Google Scholar 

  • Charest PJ, Holbrook LA, Gabard J, Iyer VN, Miki BL (1988) Agrobacterium-mediaited transformation of thin cell layer explants from Brassica napus L. Theor Appl Genet 75:438–145

    Article  Google Scholar 

  • Charest PJ, Iyer VN, Miki BL (1989) Virulence of Agrobacterium tumefaciens strains with Brassica napus and Brassica juncea. Plant Cell Rep 8:303–306

    Article  Google Scholar 

  • Chuong PV, Pauls KP, Beversdorf WD (1985) A simple culture method for Brassica hypocotyl protoplasts. Plant Cell Rep 4:4–6

    Article  Google Scholar 

  • Czernilofsky AP, Hain R, Herrera-Estrella L, Lörz H, Goyvaerts E, Baker BJ, Schell J (1986) Fate of selectable marker DNA integrated into the genome of Nicotiana tabacum. DNA 5:101–113

    Article  PubMed  CAS  Google Scholar 

  • De Block M, Brouwer DD, Tenning P (1989) Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in transgenic plants. Plant Physiol 91:694–701

    Article  PubMed  Google Scholar 

  • Downey RK, Röbbelen G (1989) Brassica species In: Röbbelen G, Downey RK, Ashri A (eds) Oil crops of the world. McGraw-Hill, New York, pp 339–362

    Google Scholar 

  • Fakhrai H (1990) Transformation of rape with Agrobacterium tumefaciens-based vectors. In: Pollard JW, Walker J (eds) Methods in molecular biology 6. Plant cell and tissue culture. Humana Press, Clifton, New York, pp 301–307

    Google Scholar 

  • Fry J, Barnason A, Horsch RB (1987) Transformation of Brassica napus with Agrobacterium tumefaciens based vectors. Plant Cell Rep 6:321–325

    Google Scholar 

  • Glimelius K (1984) High growth rate and regeneration capacity of hypocotyl protoplasts in some Brassicaceae. Physiol Plant 61:38–44

    Google Scholar 

  • Glimelius K, Djupsjöbacka M, Fellner-Feldegg H (1986) Selection and enrichment of plant protoplast heterokaryons of Brassicaceae by flow sorting. Plant Sei 45:133–141

    Google Scholar 

  • Guerche P, Jouanin L, Tepfer D, Pelletier G (1987) Genetic transformation of oilseed rape (Brassica napus) by the Ri T-DNA of Agrobacterium rhizogenes and analysis of inheritance of transformed phenotype. Mol Gen Genet 206:382–386

    Google Scholar 

  • Hain R, Bieseler B, Kindl H, Schröder G, Stöcker R (1990) Expression of stilbene synthase gene in Nicotiana tabacum results in synthesis of the phytoalexin resveratrol. Plant Mol Biol 15:325–335

    Google Scholar 

  • Hain R, Reif HJ, Langebartels R, Schreier PH, Stöcker RH, Thomzik JE, Stenzel K, Kindl H, Schmelzer E (1992) Proceedings of the Brighton crop protection conference, pests and disease 7B.5

    Google Scholar 

  • Hippe S, DĂĽring K, Kreuzaler F (1989) In situ localization of a foreign protein in transgenic plants by immunoelectron microscopy following high pressure freezing, freeze substitution and low temperature embedding. Eur J Cell Biol 50:230–234

    Google Scholar 

  • Holbrook LA, Miki BL (1985) Brassica Crown gall tumourigenesis and in vitro transformed tissue. Plant Cell Rep 4:329–332

    Google Scholar 

  • Jourdan PS, Earle ED (1986) Influence of genotype on the regeneration of plants from seedling mesophyll protoplasts of three Brassica species. Crucifer genetics workshop II (Proceedings: 58), Univ Guelph, Canada

    Google Scholar 

  • Kao HM, Seguin-Swarz G (1987) Study of factors affecting the culture of Brassica napus L. and B. juncea Coss. mesophyll protoplasts. Plant Cell Tissue Organ Cult 10:79–90

    Google Scholar 

  • Kartha KK, Michayluk MR, Kao KN, Gamborg OL, Constabel F (1974) Callus formation and plant regeneration from mesophyll protoplasts of rape plants (Brassica napus L. cv. Zephyr). Plant Sei Lett 3:265–271

    Google Scholar 

  • Kirti PB (1988) Somatic embryogenesis in hypocotyl protoplast culture of rapeseed (Brassica napus L.). Plant Breed 100:222–224

    Google Scholar 

  • Klimaszewska K, Keller WA (1985) High frequency plant regeneration from thin cell layer explants of Brassica napus. Plant Cell Tissue Organ Cult 4:183–197

    Google Scholar 

  • Klimaszewska K, Keller WA (1987) Plant regeneration from stem cortex protoplasts of Brassica napus. Plant Cell Tissue Organ Cult 8:225–233

    Google Scholar 

  • Kohlenbach HW, Wenzel G, Hoffmann F (1982) Regeneration of Brassica napus plantlets in cultures from isolated protoplasts of haploid stem embryos as compared with leaf protoplasts. Z Pflanzenphysiol 105:131–142

    Google Scholar 

  • Koncz C, Schell J (1986) The promotor of TL-DNA gene 5 controls the tissue-specific expression of chimaeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:338–396

    Google Scholar 

  • Li L, Kohlenbach HW (1982) Somatic embryogenesis in quite a direct way in cultures of mesophyll protoplasts of Brassica napus L. Plant Cell Rep 1:209–211

    Google Scholar 

  • Lu DY, Pental D, Cocking EC (1982) Plant regeneration from seedling cotyledon protoplasts. Z Pflanzenphysiol 107:59–63

    Google Scholar 

  • Menczel L, Wolfe K (1984) High frequency of fusion induced in freely suspended protoplast mixtures by polyethylene glycol and dimethylsulfoxide at high pH. Plant Cell Rep 3:196–198

    Google Scholar 

  • Miki BL, Laabbe H, Hattori J, Ouellet T, Gabard J, Sunohara G, Charest PJ, Iyer YN (1990) Transformation of Brassica napus canola cultivars with Arabidopsis thaliana acetohydroxyacid synthase genes and analysis of herbicide resistance. Theor Appl Genet 80:449–458

    Google Scholar 

  • Misra S (1990) Transformation of Brassica napus L. with a disarmed octopine plasmid of Agrobacterium tumefaciens: molecular analysis and inheritance of the transformed phenotype. J Exp Bot 41:269–275

    Google Scholar 

  • Misra S, Gedamu L (1989) Heavy metal tolerant transgenic Brassica napus L. and Nicotiana tabacum L. plants. Theor Appl Genet 78:161–168

    Google Scholar 

  • Moloney MM, Walker JM, Sharma KK (1989) High efficiency transformation of Brassica napus using Agrobacterium vectors. Plant Cell Rep 8:238–242

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol plant 15:473–497

    Google Scholar 

  • Myhre S, Siegel K, Iversen TH (1985) The application of protoplasts and cell cultures in plant cell biology. Hereditas (Suppl) 3:148–149

    Google Scholar 

  • Neuhaus G, Spangenberg G, Mittelsten Scheid O, Schweiger HG (1987) Transgenic rapeseed plants obtained by the microinjection of DNA into microspore-derived embryoids. Theor Appl Genet 75:30–36

    Google Scholar 

  • Ohlson M, Eriksson T (1988) Transformation of Brassica campestris protoplasts with Agrobacterium tumefaciens. Hereditas 108:173–177

    Google Scholar 

  • Ooms G, Brains A, Burreil M, Karp A, Twell D, Wilcox E (1985) Genetic manipulation in cultivars of oilseed rape (Brassica napus) using Agrobacterium tumefaciens. Theor Appl Genet 71:325–329

    Google Scholar 

  • Pechan P (1989) Successful cocultivation of Brassica napus microspores and proembryos with Agrobacterium. Plant Cell Rep 8:387–390

    Google Scholar 

  • Pelletier G, Primard C, Yedel F, Chetrit P, Remy R, Rousselle, Renard M (1983) Intergeneric cytoplasmic hybridization in Cruciferae by protoplast fusion. Mol Gen Genet 191:244–250

    Google Scholar 

  • Pua EC, Mehra-Palta A, Nagy F, Chua NH (1987) Transgenic plants of Brassica napus L. Bio/Technol 5:815–817

    Google Scholar 

  • Radke SE, Andrews BM, Moloney MM, Crouch ML, Kridl JC, Knauf VC (1988) Transformation of Brassica napus L. using Agrobacterium tumefaciens: developmentally regulated expression of a reintroduced napin gene. Theor Appl Genet 75:685–694

    Google Scholar 

  • RFF-Raps-Förderungs-Fonds (1986) Raps auf neuen Wegen. Mann, Gelsenkirchen-Buer, FRG, pp 10–13

    Google Scholar 

  • Schenck HR, Röbbelen G (1982) Somatic hybrids by fusion of protoplasts from Brassica oleracea and B. campestris. Z PflanzenzĂĽcht 89:278–288

    Google Scholar 

  • Schweiger HG, Dirk J, Koop HU, Kranz E, Neuhaus G, Spangenberg G, Wolff D (1987) Individual selection, culture and manipulation of higher plant cells. Theor Appl Genet 73:769–783

    Google Scholar 

  • Simmonds DH, Long NE, Keller WA (1991) High plating efficiency and plant regeneration frequency in low density protoplast cultures derived from an embryogenic Brassica napus cell suspension. Plant Cell Tissue Organ Cult 27:231–241

    Google Scholar 

  • Stein U, Blaich R (1985) Untersuchungen ĂĽber Stilbenproduktion und Botrytisanfälligkeit bei Vitis- Arten. Vitis 24:75–87

    Google Scholar 

  • Stringham GR (1977) Regeneration in stem explants of haploid rapeseed (Brassica napus L.). Plant Sei Lett 9:115–119

    Article  Google Scholar 

  • Swanson EB, Erickson LR (1989) Haploid transformation in Brassica napus using an octopineproducing strain of Agrobacterium tumefaciens. Theor Appl Genet 78:831–835

    CAS  Google Scholar 

  • Thomas E, Hoffmann F, Potrykus I, Wenzel G (1976) Protoplast regeneration and stem embryogenesis of haploid androgenetic rape. Mol Gen Genet 145:245–247

    Article  Google Scholar 

  • Thomzik JE, Hain R (1988) Transfer and segregation of triazine tolerant chloroplasts in Brassica napus L. Theor Appl Genet 76:165–171

    Article  Google Scholar 

  • Thomzik JE, Hain R (1990) Transgenic Brassica napus plants obtained by cocultivation of protoplasts with Agrobacterium tumefaciens. Plant Cell Rep 9:233–236

    Article  Google Scholar 

  • Xu ZH, Davey MR, Cocking EC (1982) Plant regeneration from root protoplasts of Brassica. Plant Sei Lett 24:117–121

    Article  Google Scholar 

  • Zambryski P, Joos H, Genetello C, Van Montagu M, Schell J (1983) Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regeneration capacity. EMBO J 2:2143–2150

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Thomzik, J.E. (1993). Transformation in Oilseed Rape (Brassica napus L.). In: Bajaj, Y.P.S. (eds) Plant Protoplasts and Genetic Engineering IV. Biotechnology in Agriculture and Forestry, vol 23. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78037-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78037-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78039-4

  • Online ISBN: 978-3-642-78037-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics