Skip to main content

The ANSA Matrix, a Useful Tool for Coding Cyclization Reactions

  • Conference paper
Chemical Structures 2
  • 223 Accesses

Abstract

The ansa matrix is proposed as a new concept for coding, storing and retrieving ring changes (ring opening, formation of rings) in the CASTOR-system of reaction documentation. The ansa matrix contains entries of reaction-invariant paths between members of the reaction core that exist in the molecular graph outside the reaction core. It does not add or alter any information that is contained in the atom vector, 12 a, and the BE-matrices, 1 B and 2 B, of the ensemble of molecules of reactant(s), 1, and product(s), 2, but — like e.g. the reaction matrix, 12 R, and the quantities relating to the reaction core, i.e. the irreducible R-matrix, 12 R I, the intact BE-matrix, 12 B I, and its associated intact atom vector, 12 a I, — it presents relevant pieces of that information in a form more suitable for mathematical treatment, and for storage and retrieval operations in practical applications. Adaptations of the details of its definition under the aspect of practical implementation are being investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brandt, J.; von Scholley, A.; Wochner, M.; Stadler, K. ‘A Documentation System for Chemical Reactions’. Paper given in a symposium on Chemical Reaction Databases in the Division of Chemical Information at the 188th National Meeting of the American Chemical Society, Philadelphia, August 26–31, 1984.

    Google Scholar 

  2. Ugi, I. K.; Brandt, J.; von Scholley, A.; Minker S.; Wochner, M.; Schönmann, H.; Straupe, B. ‘Hierarchisch strukturierte Speicherung und Ermittlung von chemischen Reaktionen’. BMFT-FB-ID 85-005, Fachinformationszentrum Energie, Physik, Mathematik: Karlsruhe, 1985.

    Google Scholar 

  3. Hierarchische Klassifizierung und Dokumentation von chemischen Reaktionen; von Scholley, A; Dissertation TU München, 1981.

    Google Scholar 

  4. Dugundji, J.; Ugi, I. ‘Algebraic Model of Constitutional Chemistry as a Basis for Chemical Computer Programs’. Top. Curr. Chem. 1973, 39, 19–64.

    CAS  Google Scholar 

  5. Ugi, I.; Bauer, J.; Brandt, J.; Friedrich, J.; Gasteiger, J.; Jochum, C.; Schubert, W. ‘Neue Anwendungsgebiete für Computer in der Chemie’. Angew. Chem. 1979, 91, 99–111.

    Article  CAS  Google Scholar 

  6. Ugi, I.; Bauer, J.; Brandt, J.; Friedrich, J.; Gasteiger, J.; Jochum, C.; Schubert, W. ‘New Applications for Computers in Chemistry’. Angew. Chem. Int. Ed. Engl. 1979, 18, 111–123.

    Article  Google Scholar 

  7. Ugi, I. ‘A Qualitative Global Mathematical View of Chemistry - James Dugundji’s Contribution to Computer Assistance in Chemistry’. In Computer Applications in Chemical Research and Education; Brandt, J.; Ugi, I., Eds; Dr. Alfred Hüthig Verlag: Heidelberg, 1989; pp. 345–366.

    Google Scholar 

  8. Blower, P. E.; Dana, R. C. ‘Creation of a Chemical Reaction Database from the Primary Literature’. In Modern Approaches to Chemical Reaction Searching; Willett, P., Ed.; Gower: Aldershot, 1986; pp. 146–164.

    Google Scholar 

  9. CASREACT User Guide; Chemical Abstracts Service: Columbus, OH, 1988.

    Google Scholar 

  10. French, S. E. ‘Our Reaction Access System’. CHEMTECH 1987 (Feb), 106–111.

    Google Scholar 

  11. Fujita, S. ‘Structure-reaction Type Paradigm in the Conventional Methods of Describing Organic Reactions and the Concept of Imaginary Transition Structures Overcoming this Paradigm’. J. Chem. Inf. Comput. Sci. 1987, 27, 120–126.

    Article  CAS  Google Scholar 

  12. Name Index of Organic Reactions; Gowan, J. E.; Wheeler, T. S.; Longman: London, 1960.

    Google Scholar 

  13. Organic Name Reactions, Krauch, H.; Kunz, W.; Wiley: London, 1964.

    Google Scholar 

  14. Reaktionen der organischen Chemie. Ein Beitrag zur Terminologie der organischen Chemie; Krauch, H.; Kunz, W.; Dr. Alfred Hüthig Verlag: Heidelberg, 1976.

    Google Scholar 

  15. Lynch, M. F.; Willett, P. ‘The Automatic Detection of Chemical Reaction Sites’. J. Chem. Inf. Comput. Sci. 1978, 18, 154–159.

    Article  CAS  Google Scholar 

  16. Nomenclature for Organic Chemical Transformations, Jones, F. A. Y., Ed.; IUPAC, Organic Chemistry Division, Commission on Physical Organic Chemistry, December 1986 (draft).

    Google Scholar 

  17. Brandt, J.; Bauer, J.; Frank, R.M.; von Scholley, A. ‘Classification of reactions by Electron Shift Patterns’. Chem. Scr. 1981, 18, 53–60.

    CAS  Google Scholar 

  18. Ein mathematisch begründetes hierarchisches Ordnungssystem chemischer Reaktionen und dessen theoretische und praktische Anwendung; Brandt, J.; Habilitationsschrift, TU München, 1981.

    Google Scholar 

  19. Brandt, J.; von Scholley, A. ‘A Systematic Classification of Reactions by Electron Shift Patterns’. Paper given at the Chemical Notation Association Conference in Exeter, September 1982. See also: Communication, Storage and Retrieval of Chemical Information; Ash, J. E.; Chubb, P. A.; Ward, S. E.; Welford, S. M.; Willett, P., Eds; Ellis Horwood: Chichester, 1985.

    Google Scholar 

  20. Morgan, H. L. ‘The Generation of a Unique Machine Description for Chemical Structures - a Technique Developed at Chemical Abstracts’. J. Chem. Doc. 1965, 5, 107–113.

    Article  CAS  Google Scholar 

  21. Jochum, C.; Gasteiger, J. ‘Canonical Numbering and Constitutional Symmetry’. J. Chem. Inf. Comput. Sci. 1977, 17, 113–117.

    Article  CAS  Google Scholar 

  22. Schubert, W.; Ugi, I. ‘Constitutional Symmetry and Unique Descriptors of Molecules’. J. Am. Chem. Soc. 1978, 100, 37–41.

    Article  CAS  Google Scholar 

  23. Randic, M. ‘On Unique Numbering of Atoms and Unique Codes for Molecular Graphs’. J. Chem. Inf. Comput. Sci. 1975, 15, 105–108.

    Article  CAS  Google Scholar 

  24. Brandt, J.; von Scholley, A. ‘An Efficient Algorithm for the Computation of the Canonical Numbering of Reaction Matrices’. Comput. Chem. 1983, 7, 51–59.

    Article  CAS  Google Scholar 

  25. Vleduts, G.E. ‘Concerning One System of Classification and Codification of Organic Reactions’. Inf. Storage Retr. 1963, 1, 117–146.

    Article  CAS  Google Scholar 

  26. Abtomatizirovannye Informatsionnye Sistemy dlya Khimii; Vleduts, G. E.; Geivandov, E. A.; Nauka, Moskva, 1974. [CA 81, 12584d].

    Google Scholar 

  27. Vladutz, G. ‘Do We Still Need a Classification of Reactions?’. In Modern Approaches to Chemical Reaction Searching; Willett, P., Ed.; Gower: Aldershot, 1986; pp. 202–220.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Brandt, J. (1993). The ANSA Matrix, a Useful Tool for Coding Cyclization Reactions. In: Warr, W.A. (eds) Chemical Structures 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-78027-1_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-78027-1_38

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-78029-5

  • Online ISBN: 978-3-642-78027-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics