Isolation of Plant Genes by T-DNA and Transposon Mutagenesis — Gene Tagging

  • Christer Jansson
  • Anders Lönneborg
Part of the Progress in Botany/Fortschritte der Botanik book series (BOTANY, volume 54)


Modern biology depends to a large extent on the identification, isolation and characterization of genes. Describing the expression, function and regulation of these genes is crucial in understanding many of the fundamental questions in development, morphology, pathogen resistance, stress responses, and other phenomena. The classical approaches to cloning require information about the gene product, i.e., the transcript or polypeptide. This information can be used to identify cDNA or genomic clones from a DNA library employing a variety of strategies including different hybridization procedures, synthetic oligonucleotides, expression vectors, specific antibodies or heterologous DNA probes, etc. However, the majority of genesis not easily cloned with these techniques. For most of the agronomically important plant genes very limited information is available about their polypeptide products. Often the only character at hand is a phenotype, a feature difficult to utilize in most of the cloning techniques listed above. Here, gene tagging offers an attractive alternative. The rationale for gene tagging as a technique to identify and isolate genes is that random or directed insertion of DNA sequences into a gene both mutates and tags the gene. The insertional element in plant systems is either T-DNA or transposons (or a combination thereoff). T-DNA and transposon-mediated gene tagging have been used successfully in the isolation of several plant genes in Arabidopsis, snapdragon (Antirrhinum majus) and maize (Zea mays) genes, respectively. In this review we present the basic techniques and results using the gene tagging approach for gene isolation.


Carnegie Inst Autonomous Element Right Border Active Transposable Element Antirrhinum Majus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. André D, Colau D, Schell J, van Montagu M, Hernalsteens J-P (1986) Mol Gen Genet 204: 512–518.CrossRefGoogle Scholar
  2. Baker B, Schell J, Lörz H, Fedoroff N (1986) Proc Natl Acad Sci USA 83: 4844–4848.PubMedCrossRefGoogle Scholar
  3. Bancroft I, Bhatt A, Sjödin C, Scofield S, Jones J, Dean C (1992) Mol Gen Genet (in press).Google Scholar
  4. Barker R (1984) Nucleic Acid Res 12: 5955–5967.PubMedCrossRefGoogle Scholar
  5. Behrens U, Fedoroff N, Laird A, Muller-Neumann M, Starlinger P, Yoder J (1984) Mol Gen Genet 194: 346–349.CrossRefGoogle Scholar
  6. Bennetzen J, Swanson J, Taylor C, Freeling M (1986) Proc Nad Acad Sci USA 81: 4125–4129.CrossRefGoogle Scholar
  7. Bonas U, Sommer H, Saedler H (1984a) Mol Gen Genet 1984: 138–143.CrossRefGoogle Scholar
  8. Bonas U, Sommer H, Saedler H (1984b) EMBO J 3: 1015–1019.PubMedGoogle Scholar
  9. Buckner B, Kelson T, Robertson DS (1990) Plant Cell 2: 867–876.PubMedCrossRefGoogle Scholar
  10. Chandlee JM (1990) Physiol Plant 79: 105–115.CrossRefGoogle Scholar
  11. Chandlee JM (1991) Dev Genet 12: 261–271.CrossRefGoogle Scholar
  12. Chandler VL, Walbot V (1986) Proc Natl Acad Sci USA 83: 1767–1771.PubMedCrossRefGoogle Scholar
  13. Chandler VL, Radicella JP, Robbins TP, Chen J, Turks D (1989) Plant Cell 1: 1175–1183.PubMedCrossRefGoogle Scholar
  14. Chen J, Greenblatt IM, Dellaporta S (1987) Genetics 117: 109–116.PubMedGoogle Scholar
  15. Cone KC, Burr FB, Burr B (1986) Proc Nad Acad Sci USA 83: 9631–9635.CrossRefGoogle Scholar
  16. Dean S, Sjödin C, Page T, Jones J, Lister C (1992) Plant J 2: 69–82.CrossRefGoogle Scholar
  17. Dellaporta SL, Chomet PS (1987) The activation of maize controlling elements. In: Hohn B, Dennis ES (eds) Genetic flux in plants, Springer, Berlin Heidelberg New York, pp 169–216.Google Scholar
  18. Dellaporta SL, Greenblatt I, Kermicle JL, Hicks JB, Wessler SR (1987) Stadler Symp 18: 263–282.Google Scholar
  19. Dooner HK, Nelson O (1979) Proc Natl Acad Sci USA 76: 2369–2371.PubMedCrossRefGoogle Scholar
  20. Dooner HK, Weck E, Adams S, Ralston E, Favreau M, English J (1985) Mol Gen Genet 200: 240–246.CrossRefGoogle Scholar
  21. Döring H-P, Starlinger P (1986) Annu Rev Genet 20: 175–200.PubMedCrossRefGoogle Scholar
  22. Fedoroff F, Wessler S, Shure M (1983) Cell 35: 235–242.PubMedCrossRefGoogle Scholar
  23. Fedoroff N, Furtek DB, Nelson OE (1984) Proc Natl Acad Sci USA 81: 3825–3829.PubMedCrossRefGoogle Scholar
  24. Feldmann KA (1991) Plant J 1: 71–82.CrossRefGoogle Scholar
  25. Feldman KA, Marks MD (1987) Mol Gen Genet 208: 1–9.CrossRefGoogle Scholar
  26. Feldmann KA, Marks MD, Christianson ML, Quatrano RS (1989) Science 243: 1351–1354.PubMedCrossRefGoogle Scholar
  27. Fincham JR, Harrison BR (1967) Heredity 22: 211–224.CrossRefGoogle Scholar
  28. Freeling M, Bongard-Pierce DK, Harberd N, Lane B, Hake S (1988) Genes involved in the patterns of maize leaf cell division. In: Verma P, Goldberg R (eds) Plant gene research - temporal and spatial regulation of plant genes. Springer, Berlin Heidelberg New York, pp 41–62.CrossRefGoogle Scholar
  29. Frey M, Reinecke J, Grant S, Saedler H, Gierl A (1990) EMBO J 9: 4037–4044.PubMedGoogle Scholar
  30. Geräts AGM, Beld M, Huits H, Prescott A (1989) Dev Genet 10: 561–568.CrossRefGoogle Scholar
  31. Gierl A, Schwarz- Sommer Z, Saedler H (1985) EMBO J 4: 579–583.PubMedGoogle Scholar
  32. Hake S, Bird R, Neuffer MG, Freeling M (1985) Development of the maize ligule and mutants that affect it. In: Freeling M (ed) Plant genetics. Alan R Liss, New York, pp 61–71.Google Scholar
  33. Hake S, Vollbrecht E, Freeling M (1989) EMBO J 8: 15–22.PubMedGoogle Scholar
  34. Harrison BJ, Carpenter R (1973) Heredity 31: 309–323.CrossRefGoogle Scholar
  35. Harrison BJ, Fincham JRS (1964) Heredity 19: 237–258.CrossRefGoogle Scholar
  36. Herman PL, Marks MD (1989) Plant Cell 1: 1051–1055.PubMedCrossRefGoogle Scholar
  37. Janson C, Lönneborg A (1991) Construction and analysis of cyanobacterial mutants in photosynthesis research. In: Behnke H-D, Esser K, Kubitzki K, Runge M, Ziegler H (eds) Progress in Botany, vol 52. Springer, Berlin Heidelberg New York, pp 226–233.Google Scholar
  38. Knapp S, Coupland G, Uhrig U, Starlinger P, Salamini F (1988) Mol Gen Genet 213: 285–290.CrossRefGoogle Scholar
  39. Koncz C, Martini N, Mayerhofer R, Koncz-Kalman Z, Körber H, Redei GP, Schell J (1989) Proc Nad Acad Sci USA 86: 8467–8471.CrossRefGoogle Scholar
  40. Koncz C, Mayerhofer R, Koncz-Kalman Z, Nawrath C, Reiss B, Redei GP, Schell J (1990) EMBO J 9: 1357–1346.Google Scholar
  41. Kunze R, Starlinger P, Schwartz D (1988) Mol Gen Genet 214: 325–327.CrossRefGoogle Scholar
  42. Lechelt C, Peterson T, Laird A, Chen J, Deilaporta S, Dennis E, Peacock W, Starlinger P (1989) Mol Gen Genet 219: 225–234.PubMedCrossRefGoogle Scholar
  43. Mansour SL, Thomas KR, Capecchi MR (1988) Nature 336: 348–352.PubMedCrossRefGoogle Scholar
  44. Marks MD, Feldmann KA (1989) Plant Cell 1: 1043–1050.PubMedCrossRefGoogle Scholar
  45. Martienssen RA, Barkan A, Freeling M, Taylor WC (1989) EMBO J 8: 1633–1639.PubMedGoogle Scholar
  46. Martin C, Carpenter R, Sommer H, Saedler H, Coen ES (1985) EMBO J 4: 1625–1630.PubMedGoogle Scholar
  47. McCarty DR, Carson CB, Stinard PS, Robertson DS (1989a) Plant Cell 1: 523–532.PubMedCrossRefGoogle Scholar
  48. McCarty DR, Carson CB, Lazar M, Simonds SC (1989b) Dev Genet 10: 473–481.CrossRefGoogle Scholar
  49. McClintock B (1947) Carnegie Inst Wash Year Book 47: 155–169.Google Scholar
  50. McClintock B (1948) Carnegie Inst Wash Year Book 48: 142–154.Google Scholar
  51. McClintock B (1951a) Carnegie Inst Wash Year Book 50: 174–181.Google Scholar
  52. McClintock B (1951b) Cold Spring Harbor Symp Quant Biol 16: 13–47.PubMedCrossRefGoogle Scholar
  53. McClintock B (1953) Genetics 38: 579–599.PubMedGoogle Scholar
  54. McClintock B (1954) Carnegie Inst Wash Year Book 54: 254–260.Google Scholar
  55. McClintock B (1958) Carnegie Inst Wash Year Book 58: 452–456.Google Scholar
  56. McClintock B (1965) Brookhaven Symp Biol 18: 162–184.Google Scholar
  57. McLaughlin M, Walbot V (1987) Genetics 117: 771–776.PubMedGoogle Scholar
  58. Meyerowitz EM, Pruitt RE (1985) Science 229: 1214–1218.PubMedCrossRefGoogle Scholar
  59. Motto M, Marotta R, DiFonzo N, Soave C, Salamini F (1986) Genetics 112: 121–133.PubMedGoogle Scholar
  60. Motto M, Maddaloni M, Ponziani G, Brembilla M, Martta R, DiFonzo N, Soave C, Thompson R, Salamini F (1988) Mol Gen Genet 212: 488–494.CrossRefGoogle Scholar
  61. Müller-Neumann M, Yoder J, Starlinger P (1984) Mol Gen Genet 198: 19–24.CrossRefGoogle Scholar
  62. Neill JJ, Horgan R, Rees AF (1987) Planta 171: 358–354.CrossRefGoogle Scholar
  63. O’Reilly C, Shepherd N, Pereira A, Schwarz-Sommer Z, Bertram I, Robertson D, Peterson P, Saedler H (1985) EMBO J 4: 877–882.PubMedGoogle Scholar
  64. Paz-Arez J, Wienand U, Peterson P, Saedler H (1986) EMBO J 5: 829–833.Google Scholar
  65. Peacock WJ, Dennis ES, Gerlach WL, Sachs MM, Schwarz D (1985) Cold Spring Harbor Symp Quant Biol 19: 347–354.Google Scholar
  66. Pereira A, Schwarz-Sommer Z, Gierl A, Bertran I, Peterson P, Saedler H (1985) EMBO J 4: 17–23.PubMedGoogle Scholar
  67. Pereira A, Cuypers H, Gierl A, Schwarz-Sommer Z, Saedler H (1986) EMBO J 5: 835–841.PubMedGoogle Scholar
  68. Peterson PA (1953) Genetics 38: 682–683.Google Scholar
  69. Pohlmann R, Fedoroff N, Messing J (1984a) Cell 37: 635–643.CrossRefGoogle Scholar
  70. Pohlmann R, Fedoroff N, Messing J (1984b) Cell 39: 417.CrossRefGoogle Scholar
  71. Rommens CMT, van Haaren MJJ, Büchel AS, Mol JNM, van Tunen AJ, Nijkamp HJJ, Hille J (1992) Mol Gen Genet 231: 433–441.PubMedCrossRefGoogle Scholar
  72. Schmidt RJ, Burr FA, Burr B (1987) Science 238: 960–963.PubMedCrossRefGoogle Scholar
  73. Schmidt RJ, Burr FA, Aukerman MJ, Burr B (1990) Proc Natl Acad Sci USA 87: 46–50.PubMedCrossRefGoogle Scholar
  74. Schwartz D, Dennis ES (1986) Mol Gen Genet 205: 476–482.CrossRefGoogle Scholar
  75. Schwarz-Sommer Z, Gierl A, Klosgen R, Wienand U, Peterson P, Saedler H (1984) EMBO J 3: 1021–1028.PubMedGoogle Scholar
  76. Schwarz-Sommer Z, Gierl A, Bemtgen R, Saedler H (1985) EMBO J 4: 2439–2443.PubMedGoogle Scholar
  77. Sutton WD, Gerlach WL, Schwartz D, Peacock WJ (1984) Science 223: 1265–1268.PubMedCrossRefGoogle Scholar
  78. Theres N, Scheele T, Starlinger P (1987) Mol Gen Genet 109: 193–197.CrossRefGoogle Scholar
  79. Tuschall DM, Hannah LC (1982) Genetics 100: 105–111.PubMedGoogle Scholar
  80. Upadhyaya K, Sommer H, Krebbers U, Saedler H (1985) Mol Gen Genet 199: 201–207.CrossRefGoogle Scholar
  81. Van Sluys MA, Tempe J, Fedoroff N (1987) EMBO J 6: 3881–3889.PubMedGoogle Scholar
  82. Weck E, Courage U, Döring H, Fedoroff N, Starlinger P (1984) EMBO J 3: 1713–1716.PubMedGoogle Scholar
  83. Weil CF, Wessler SR (1990) Annu Rev Plant Physiol Plant Mol Biol 41: 527–552.CrossRefGoogle Scholar
  84. Wienand U, Weydeman V, Niesbach-Klosgen U, Peterson P, Saedler H (1986) Mol Gen Genet 203: 202–207.CrossRefGoogle Scholar
  85. Yanofsky MF, Ma H, Bowman J, Drews GN, Feldmann KA, Meyerowitz EM (1990) Nature 346: 35–39.PubMedCrossRefGoogle Scholar
  86. Yoder JI, Palys J, Alpert K, Lassner M (1988) Mol Gen Genet 213: 291–296.CrossRefGoogle Scholar
  87. Zambryski P (1988) Annu Rev Genet 22: 1–30.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Christer Jansson
    • 1
  • Anders Lönneborg
    • 2
  1. 1.The Arrhenius Laboratories Department of BiochemistryUniversity of StockholmStockholmSweden
  2. 2.Plant Molecular Biology LaboratoryNorwegian Forest Research InstituteÅs-NLHNorway

Personalised recommendations