Recombination: Sexual Reproduction — a Tool for Outcrossing and Recombination of Genetic Material

  • Ulf Stahl
  • Ursula Kües
Part of the Progress in Botany/Fortschritte der Botanik book series (BOTANY, volume 54)


Sexual reproduction is characterized by karyogamy and meiosis and is associated with an alternation of haploid and diploid nuclear phases. Amongst evolutionary biologists and geneticists there is a continuing controversy concerning the reasons why sexual reproduction has been evolved (e.g., see E. Darwin 1974; C. Darwin 1839, 1876; Weismann 1891; Muller 1932; Mayr 1963; Ghiselin 1974; Maynard Smith 1978; Bell 1985; Stearns 1987; Michod and Levin 1988; Bernstein and Bernstein 1991; Haig and Grafen 1991). In terms of proliferation or improving the mean fitness of a population, sexual reproduction is not very efficient. From the bioeconomic point of view, sexual reproduction is seen to be energetically expensive, that is, the need to find a mate, special cell processes such as fertilization and meiosis, and additional costs in the development of special sex organs (Maynard Smith 1978; Lewis 1983; Uyenoyama 1984; Krieber and Rose 1986; Michod and Levin 1988). Sexual reproduction does, however, seem to be advantageous but there is no consensus as to what these advantages may be. In fact, the arguments just given indicate a clear advantage in asexual over sexual reproduction - why then do we find such elaborate and expensive sexual reproduction mechanisms so ubiquitoulsy in nature?


Sexual Reproduction Mating Type Neurospora Crassa Haploid Cell Mating Type Locus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Akada R, Kai J, Yamashita I, Miyakawa T, Fului S (1989a) Arch Microbiol 152: 484–487.Google Scholar
  2. Akada R, Minomi K, Kai J, Yamashita I, Miyakawa T, Fukui S (1989b) Mol Cell Biol 9: 3491–3498.PubMedGoogle Scholar
  3. Astell CR, Ahlstrom-Jonasson L, Smith M, Tatchell K, Nasmyth KA, Hall B (1981) Cell 27: 15–23.PubMedGoogle Scholar
  4. Hanno I (1967) J Gen Appi Microbiol 13: 167–196.Google Scholar
  5. Banuett F (1991) In: Bennett JW, Lasure LL, (eds) More manipulations in fungi. Academic Press, San Diego, CA, pp 217–234.Google Scholar
  6. Banuett F (1992) Trends Genet 8: 174–180.PubMedGoogle Scholar
  7. Beach DH (1983) Nature 305: 682–688.Google Scholar
  8. Bell G (1985) Experientia 41: 1235–1245.PubMedGoogle Scholar
  9. Bernstein C, Bernstein H (1991) Aging, sex and DNA repair. Academic Press, San Diego, CA.Google Scholar
  10. Bistis GN (1981) Mycologia 73: 959–975.Google Scholar
  11. Bistis GN (1983) Exp Mycol 7: 292–295.Google Scholar
  12. Blakeslee AF (1904) Proc Acad Sei 40: 203–319.Google Scholar
  13. Bölker M, Urban M, Kahmann R (1992) Cell 68: 441–450.PubMedGoogle Scholar
  14. Burnett JH (1965) In: Esser K, Raper JR (eds) Incompatibility in fungi. Springer, Berlin Heidelberg New York, pp 98–113.Google Scholar
  15. Casselton LA (1978) In: Smith JE, Berry DR (eds) The filamentous fungi, vol 3. Arnold, London, UK, pp 275–297.Google Scholar
  16. Collins RR (1980) Mycologia 72: 1109.Google Scholar
  17. Cross F, Hartwell LH, Jackson C, Konopka JB (1987) Annu Rev Cell Biol 4: 429–457.Google Scholar
  18. Darwin C (1839) Journal of researches into the geology and natural history of the various countries visited by the H.M.S. Beagle, under the command of captain Fitzroy, R.N. from 1832 to 1836. Henry Colburn, London.Google Scholar
  19. Darwin C (1876) The effects of cross and self fertilization in the vegetable kingdom. John Murray, London.Google Scholar
  20. Darwin E (1794) Zoomania; or, The laws of organic life, vol 1. J. Johnson, London.Google Scholar
  21. Debuchy R, Coppin E (1992) Mol Gen Genet 233: 113–121.PubMedGoogle Scholar
  22. Dolan JW, Fields S (1991) Biochim Biophys Acta 1088: 155–169.PubMedGoogle Scholar
  23. Dranginis AM (1990) Nature 347: 682–685.PubMedGoogle Scholar
  24. Egel R (1984) Curr Genet 8: 205–210.Google Scholar
  25. Egel R, Eie B (1987) Curr Genet 12: 429–433.Google Scholar
  26. Egel R, Kohli J, Thuriaux P, Wolf K (1980) Annu Rev Genet 14: 77–108.PubMedGoogle Scholar
  27. Egel R, Beach DH, Klar AJS (1984) Proc Natl Acad Sci USA 81: 3481–3485.PubMedGoogle Scholar
  28. Egel R, Nielson O, Weilguny D (1990) Trends Genet 6: 369–373.PubMedGoogle Scholar
  29. Elble R, Tye B-K (1991) Proc Natl Acad Sci USA 88: 10966–10970.PubMedGoogle Scholar
  30. Esser K (1971) Mol Gen Genet 110: 86–100.PubMedGoogle Scholar
  31. Fields S (1990) TIBS 15: 270–273.PubMedGoogle Scholar
  32. Fincham JRS (1983) Genetics. John Wright and Sons Ltd. Bristol, pp 518–522.Google Scholar
  33. Flexer A (1965) Am J Bot 52: 634.Google Scholar
  34. Franklin NC (1967) Genetics 55: 699–707.PubMedGoogle Scholar
  35. Franklin NC (1971) In: Hershey AD (ed) The bacteriophage lambda. Cold Spring Harbor Lab. Cold Spring Harbor New York, pp 175–194.Google Scholar
  36. Frese D, Stahl U (1992) Mechanisms of aging and development 65: 277–288.Google Scholar
  37. Froeliger EH, Leong SA (1991) Gene 100: 113–122.PubMedGoogle Scholar
  38. Ghiselin MT (1974) The economy of nature and the evolution of sex. Univ California Press, Berkeley, Ca.Google Scholar
  39. Giasson L, Specht CA, Milgrim C, Novotny CP, Ullrich RC (1989) Mol Gen Genet 218: 72–77.PubMedGoogle Scholar
  40. Gillissen B, Bergemann J, Sandmann C, Schroer B, Bölker M, Kahmann R (1992) Cell 68: 647–658.PubMedGoogle Scholar
  41. Glass NL, Lorimer IAJ (1991) In: Bennett JW, Lasure LL (eds) More manipulations in fungi. Academic Press, San Diego, CA, pp 194–216.Google Scholar
  42. Glass NL, Vollmer SJ, Stäben C, Groteleuschen J, Metzenberg RL, Yanofsky C (1988) Science 241: 570–573.PubMedGoogle Scholar
  43. Glass NL, Groteleuschen J, Metzenberg RL (1990) Proc Nati Acad Sci USA 87: 4912–4916.Google Scholar
  44. Goutte C, Johnson AD (1988) Cell 52: 875–882.PubMedGoogle Scholar
  45. Gubbay J, Collignon J, Koopmam P, Chapel B, Economou A, Munsterberg A, Vivian N, Goodfellow P, Lovell-Badge R (1990) Nature 346: 245–250.PubMedGoogle Scholar
  46. Guillaumin JJ, Anderson JB, Korhonen K (1991) In: Shaw HI CG, Kile GA (eds) Armillaria root disease. Agrie Handbook No 691, Forest Service, United States Department of Agriculture Washington, DC, pp 10–20.Google Scholar
  47. Günther E (1984) Lehrbuch der Genetik. Fischer, Stuttgart, 349 pp.Google Scholar
  48. Haig D, Grafen A (1991) J Theor Biol 153: 531–558.PubMedGoogle Scholar
  49. Harley VR, Jackson DI, Hextal PJ, Hawkins JR, Berkowitz GD, Sockanathan S, Lovell-Badge R, Goodfellow PN (1992) Science 255: 463–556.Google Scholar
  50. Hawthorne DC (1983) Genetics 48: 1727–1729.Google Scholar
  51. Herskowitz I (1988) Microbiol Rev 52: 536–553.PubMedGoogle Scholar
  52. Herskowitz I (1989) Nature 342: 749–757.PubMedGoogle Scholar
  53. Herskowitz I (1992) Nature 357: 190–191.PubMedGoogle Scholar
  54. Hickey DA (1982) Genetics 101: 519–531.PubMedGoogle Scholar
  55. Hickey DA (1984) Nature 311: 417–418.Google Scholar
  56. Holliday R (1984) In: Evans CE, Dickenson HG (eds) Controlling events in meiosis. Soc Exp Biol Symp 38, Cambridge Univ Press, Cambridge, pp 381–394.Google Scholar
  57. Ippen-Ihler KA, Minkley EG Jr (1986) Annu Rev Genet 20: 593–624.PubMedGoogle Scholar
  58. Ishibashi Y, Sakagami Y, Isogai A, Suzuki A (1984) Biochemistry 23: 1399–1404.Google Scholar
  59. Ivy JM, Klar AJS, Hicks JB (1986) Mol Cell Biol 6: 688 702.Google Scholar
  60. Jarvis EE, Clark KL, Sprague GF JR (1988) Mol Cell Biol 8: 309–320.PubMedGoogle Scholar
  61. Jensen R, Sprague F, Herskowitz I (1983) Proc Nad Acad Sei USA 80: 3035–3039.Google Scholar
  62. Johnson AD, Herskowitz I (1985) Cell 42: 237 247.Google Scholar
  63. Kawano S, Kuroiwa T, Anderson RW (1987) J Gen Microbiol 133: 2539–2546.Google Scholar
  64. Kayne PS, Kim U-J, Han M, Mullen JR, Yoshizaki F, Grunstein M (1988) Cell 55: 27–39.PubMedGoogle Scholar
  65. Keheler CA, Goutte C, Johnson AD (1988) Cell 53: 927–936.Google Scholar
  66. Keheler CA, Redd MJ, Schultz J, Carlson M, Johnson AD (1992) Cell 68: 709–719.Google Scholar
  67. Kelly M, Burke J, Smith M, Klar A, Beach D (1988) EMBO J 7: 1537–1547.PubMedGoogle Scholar
  68. Klar AJS (1987) Nature 326: 466–470.PubMedGoogle Scholar
  69. Klar AJS (1989) In: Berg DE, Howe MM, Mobile DNA (eds) Am Soc Microbiol, Washington, DC, pp 671–692.Google Scholar
  70. Klar AJS (1990) EMBO J 9: 1407–1415.PubMedGoogle Scholar
  71. Klar AJS, Bonaduce MB (1991) Genetics 129: 1033–1042.PubMedGoogle Scholar
  72. Klar AJS, Miglio LM (1986) Cell 46: 725–731.PubMedGoogle Scholar
  73. Klar AJS, Strathem JN, Broach Jr, Hicks JB (1981a) Nature 289: 239–244.PubMedGoogle Scholar
  74. Klar AJS, Strathern JN, Hicks JB (1981b) Cell 25: 517–524.PubMedGoogle Scholar
  75. Klar AJS, Bonaduce MJ, Cafferkey R (1991) Genetics 127: 489–496.PubMedGoogle Scholar
  76. Koltin Y, Raper JR, Simchen G (1967) Proc Natl Acad Sei USA 57: 55–62.Google Scholar
  77. Kostriken R, Heffron F (1984) Cold Spring Harbor Symp Quant Biol 49: 89–96.PubMedGoogle Scholar
  78. Krieber M, Rose MR (1986) J Theror Biol 122: 421–440.Google Scholar
  79. Kronstad JW, Leong SA (1990) Genes Dev 4: 1348–1395.Google Scholar
  80. Kües U, Casselton LA (1992a) Mycol Res 96: 993–1006.Google Scholar
  81. Kües U, Casselton LA (1992b) In: Setlow JK (ed) Genetic engineering, principles and methods, vol 14, Plenum, New York, pp 251–268.Google Scholar
  82. Kües U, Casselton LA (1992c) Trends Genet 8: 154–155.PubMedGoogle Scholar
  83. Kües U, Richardson WVJ, Mutasa ES, Tymon AM, Gaubatz S, Gregoriades A, Casselton LA (1992a) Genes Dev 6: 568–577.PubMedGoogle Scholar
  84. Kües U, Richardson WVJ, Mutasa ES, Tymon AM, Gaubatz S, Casselton LA (1992b) In: Stahl U, Tudzynski P (eds) Proc. of the EMBO Workshop Molecular Biolgoy of filamentous fungi. Verlag Chemie, Weinheim, pp 241–351.Google Scholar
  85. Kurtz S, Shore D (1991) Genes Dev 5: 616–628.PubMedGoogle Scholar
  86. Laughon A, Scott MP (1984) Nature 310: 25–31.PubMedGoogle Scholar
  87. Leupold U (1950) C R Lab Carlsberg Ser Physiol 24: 381–480.Google Scholar
  88. Leupold U (1958) Cold Spring Harbor Symp Quant Biol 23: 161–170.PubMedGoogle Scholar
  89. Lewis JW Jr (1983) J Theor Biol 93: 927–951.Google Scholar
  90. Lindahl T (1977) In: Nichols WW, Murphy DG (eds) DNA repair processes. Symposia Specialists, Miami, pp 225–240.Google Scholar
  91. Lipke PN, Kurjan J (1992) Microbiol Rev 56: 180–194.PubMedGoogle Scholar
  92. Marcou D (1961) Ann Sci Nat Bot 12: 653–764.Google Scholar
  93. Marmeisse R (1988) Sex Plant Reprod 1: 195–201.Google Scholar
  94. Marmeisse R (1991) Mycol Res 95: 465–468.Google Scholar
  95. Marsh L, Neiman AM, Herskowitz I (1991) Annu Rev Cell Biol 7: 699–728.PubMedGoogle Scholar
  96. May G, Le Chavanton L, Pukkila P (1991) Genetics 128: 529–538.PubMedGoogle Scholar
  97. Maynard Smith J (1978) The evolution of sex. Cambridge Univ Press, Cambridge.Google Scholar
  98. Mayr E (1963) Animal species and evolution. Harward Univ Press, CambridgeGoogle Scholar
  99. McGill C, Shafer B, Strathem JN (1989) Cell 57: 459–467.PubMedGoogle Scholar
  100. Meinhardt F, Esser K (1990) Crc Rev Plant Sci 9: 329–341.Google Scholar
  101. Meinhardt F, Leslie JF (1982) Cuir Genet 5: 65–68.Google Scholar
  102. Metzenberg RL (1990) Genetics 125: 457–462.PubMedGoogle Scholar
  103. Metzenberg RL, Glass NL (1990) Bio Essays 12: 53–68.Google Scholar
  104. Michod RE, Levin BR (eds) (1988) The evolution of sex. An examination of current ideas. Sinauer, Sunderland, Ma.Google Scholar
  105. Miller AM (1984) EMBO J 3: 1061–1065.PubMedGoogle Scholar
  106. Miyata H, Miyata M (1981) J Gen Appl Microbiol 27: 365–371.Google Scholar
  107. Mullen JR, Kayne PS, Moerschell RP, Tsunsasawa S, Gribskow M, Colavito-Shepanski M, Grunstein M, Sherman F, Sternglanz R (1989) EMBO J 8: 2067–2075.PubMedGoogle Scholar
  108. Muiier HJ (1932) Am Natur 66: 118–138.Google Scholar
  109. Mutasa ES, Tymon AM, Göttgens B, Mellon FM, Little PFR, Casselton LA (1990) Curr Genet 18: 223–229.Google Scholar
  110. Nakaseko Y, Adachi Y, Funahashi S, Niwa O, Yanagida M (1986) EMBO J 5: 1011–1021.PubMedGoogle Scholar
  111. Nasmyth KA (1982) Annu Rev Genet 16: 439–500.PubMedGoogle Scholar
  112. Nasmyth KA (1983) Nature 302: 670–676.PubMedGoogle Scholar
  113. Nasmyth K, Shore D (1987) Science 237: 1162–1170.PubMedGoogle Scholar
  114. Nasmyth KA, Tatchell K, Hall BD, Astell C, Smith M (1981a) Cold Spring Harbor Symp Quant Biol 45: 961–981.PubMedGoogle Scholar
  115. Nasmyth KA, Tatchell K, Hall BD, Astell C, Smith M (1981b) Nature 289: 244–250.PubMedGoogle Scholar
  116. Nasmyth KA, Stillman D, Kipling D (1987) Cell 48: 579–587.PubMedGoogle Scholar
  117. Nasmyth K, Adolf G, Lydall D, Seddon A (1990) Cell 62: 631–647.PubMedGoogle Scholar
  118. Ner SS (1992) Curr Biol 2: 208–210.PubMedGoogle Scholar
  119. Ner SS, Smith M (1989) Mol Cell Biol 9: 4623–4620.Google Scholar
  120. Neuhauser KS, Gilbertson RL (1971) Mycologica 63: 722–735.Google Scholar
  121. Nielsen O, Egel R (1989) EMBO J 8: 269–276.PubMedGoogle Scholar
  122. Novotny CP, Stankis MM, Speckt CA,. Yang H, Giasson L, Ullrich RC (1991) In: Bennett JW, Lasure LL (eds) More manipulations in fungi. Academic Press, San Diego, CA, pp 235–257.Google Scholar
  123. Passmore S, Elble R, Tye B-K (1989) Genes Dev 3: 921–935.PubMedGoogle Scholar
  124. Perkins DD (1987) Genetics 115: 215–216.PubMedGoogle Scholar
  125. Phillips CL, Vershon AK, Johnson AD, Dahlquist FW (1991) Genes Dev 5: 764–772.PubMedGoogle Scholar
  126. Picard M, Debuchy R, Coppin E (1991) Genetics 128: 539–547.PubMedGoogle Scholar
  127. Pillus L, Rine J (1989) Cell 59: 637–647.PubMedGoogle Scholar
  128. Puhalla JE (1968) Genetics 60: 461–474.PubMedGoogle Scholar
  129. Puhalla JE (1970) Genet Res 16: 229–232.Google Scholar
  130. Raper C (1983) In: Bennett JW, Ciegler A (eds) Seconadary metabolism and differentiation in fungi. Marcel Dekker, New York, pp 195–238.Google Scholar
  131. Raper JR (1966) Genetics of sexuality in higher fungi. Ronald, New York.Google Scholar
  132. Raper JR, Raper CA (1968) J Elisha Mitchell Sci Soc 84: 267–273.Google Scholar
  133. Raper JR, Baxter MG, Ellingboe AH (1960) Proc Natl Acad Sci USA 46: 833–842.PubMedGoogle Scholar
  134. Rine J, Herskowitz I (1987) Genetics 116: 9–22.PubMedGoogle Scholar
  135. Rizet G (1953) C R Acad Sci 237: 1106–1109.Google Scholar
  136. Robson GE, Williams KL (1990) Cuir Genet 1: 299.Google Scholar
  137. Rowell JB, DeVay JE (1954) Phytopathology 44: 356–362.Google Scholar
  138. Russell DW, Jensen R, Zoller M, Burke J, Errede B, Smith M, Herskowitz I (1986) Mol Cell Biol 6: 4281–4294.PubMedGoogle Scholar
  139. Sakagami Y, Yoshida M, Isogai A, Suzuki A (1981) Science 212: 1525–1527.PubMedGoogle Scholar
  140. Sauer RT, Smith DL, Johnson AD (1988) Genes Dev 2: 807–816.PubMedGoogle Scholar
  141. Schulz B, Banuett F, Dahl M, Schlesinger R, Schäfer W, Martin T, Herskowitz I, Kahmann R (1990) Cell 60: 295–306.PubMedGoogle Scholar
  142. Sengupta P, Cochran BH (1991) Genes Dev 5: 1924–1934.PubMedGoogle Scholar
  143. Shepherd JCW, McGinnis W, Carrasco AE, De Robertis EM, Gehring WJ (1984) Nature 310: 70–71.PubMedGoogle Scholar
  144. Siegel RW (1967) In: Woolhouse HW (ed) Aspects of the biology of aging. Soc Exp Biol Symp 21. Cambridge Univ Press, Cambridge, pp 127–148.Google Scholar
  145. Siliciano PG, Tatchell K (1984) Cell 37: 969–978.PubMedGoogle Scholar
  146. Simchen J (1967) Genet Res 9: 195–210.Google Scholar
  147. Simchen G, Starnberg J (1969a) Heredity 24: 369–381.PubMedGoogle Scholar
  148. Simchen G, Starnberg J (1969b) Nature 222: 329–332.PubMedGoogle Scholar
  149. Sinclair AH, Berta P, Palmer MS, Hawkins JR, Griffiths BL, Smith MJ, Foster JW, Frischauf AM, Lovell-Badge R, Goodfellow PN (1990) Nature 346: 240–244.PubMedGoogle Scholar
  150. Smith DL, Johnson AD (1992) Cell 68: 133–142.PubMedGoogle Scholar
  151. Specht CA, Stankis MM, Giasson L, Novotny CP, Ullrich RC (1992) Proc Natl Acad Sci USA 89: 7174–7178.PubMedGoogle Scholar
  152. Sprague GF Jr (1990) Adv Genet 27: 33–62.PubMedGoogle Scholar
  153. Stäben C, Yanofsky C (1990) Proc Natl Acad Sci USA 87: 4917–4921.PubMedGoogle Scholar
  154. Stahl U, Esser K (1992) In: Rehm HJ, Reed G (eds) Biotechnology, vol 2, 2nd edn. VCH, Weinheim, pp 73–92.Google Scholar
  155. Starnberg J (1968) Mol Gen Genet 102: 221–228.Google Scholar
  156. Starnberg J, Koltin Y (1973) Heredity 30: 15–26.Google Scholar
  157. Stankis MM, Specht CA, Yang H, Giasson L, Ullrich RC, Novotny CP (1992) Proc Natl Acad Sci USA 89: 7169–7173.PubMedGoogle Scholar
  158. Stearns SC (ed) (1987) The evolution of sex and its consequences. Birkhäuser, Basel.Google Scholar
  159. Strathern JN, Herskowitz I (1979) Cell 17: 371–381.PubMedGoogle Scholar
  160. Strathern JN, Spatola E, McGill C, Hicks JB (1980) Proc Natl Acad Sci USA 77: 2839–2843.PubMedGoogle Scholar
  161. Szostak JW, Orr-Weaver TL, Rothstein RJ, Stahl F (1983) Cell 33: 25–35.PubMedGoogle Scholar
  162. Tan S, Richmond TJ (1990) Cell 62: 367–377.PubMedGoogle Scholar
  163. Thomas CM (ed) (1989) Promiscous plasmids of Gramnegative bacteria. Academic Press, London.Google Scholar
  164. Tice RR, Setlow RB (1985) In: Finch CE, Schneider EL (eds) Handbook of the biology of aging. Van Nostrand Reinhold, New York, pp 173–224.Google Scholar
  165. Turcq B, Denayrolles M, Begueret J (1990) Curr Genet 17: 297–303.Google Scholar
  166. Turcq B, Deleu C, Denayrolles M, Begueret J (1991) Mol Gen Genet 228: 265–269.PubMedGoogle Scholar
  167. Tymon A, Kües U, Richardson WVJ, Casselton LA (1992) EMBO J 11: 1805–1813.PubMedGoogle Scholar
  168. Ullrich RC, Anderson JB (1978) Exp Mycol 2: 119–129.Google Scholar
  169. Ullrich RC, Specht CA, Stankis MM, Yang H, Giasson L, Novotny CP (1991) In: Setlow JK (ed) Genetic engineering, principles and methods, vol 13. Plenum, New York, pp 279–306.Google Scholar
  170. Uyenoyama MK (1984) Evolution 38: 87–102.Google Scholar
  171. Weismann A (1891) Essays upon heredity and kindred biological problems, 2nd edn, vols I and I I. Clarendon, Oxford.Google Scholar
  172. White CI, Haber JE (1990) EMBO J 9: 663–673.PubMedGoogle Scholar
  173. Whiteway M, Freeman R, van Arsdell S, Szostak JW, Thorner J (1987) Mol Cell Biol 7: 3713–3722.PubMedGoogle Scholar
  174. Willetts N, Skurray R (1987) In: Neudhardt FC (ed) Escherichia coli and Salmonella typhimwrium. Am Soc Microbiol, Washington DC, vol 2, pp 1110.Google Scholar
  175. Willetts N, Wilkins B (1984) Microbiol Rev 48: 24–51.PubMedGoogle Scholar
  176. Wolberger C, Vershon AK, Liu B, Johnson AD, Pabo CO (1991) Cell 67: 517–528.PubMedGoogle Scholar
  177. Wong GJ, Wells K (1985) Trans Br Mycol Soc 84: 95–109.Google Scholar
  178. Yoder OC, Turgeon BG, Schäfer W, Ciuffetti L, Bohlmann H, van Etten HD (1989) Found Biotechnol Ind Ferment Res 6: 189–196.Google Scholar
  179. Youngman PJ, Anderson RW, Holt CE (1981) Genetics 97: 513–530.PubMedGoogle Scholar

Copyright information

© Springer Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • Ulf Stahl
    • 1
  • Ursula Kües
    • 2
  1. 1.Institut für Biotechnologie Fachgebiet Mikrobiologie und GenetikTechnische Universität BerlinBerlin 65Germany
  2. 2.Department of Plant SciencesUniversity of OxfordOxfordUK

Personalised recommendations