Advertisement

The Effect of Immunological Blockade of Reissner’s Fiber Formation on the Circulation of Cerebrospinal Fluid Along the Central Canal of the Rat Spinal Cord

  • P. Fernández-Llebrez
  • M. Cifuentes
  • J. M. Grondona
  • J. Pérez
  • E. M. Rodríguez

Abstract

Although the subcommissural organ—Reissner’s fiber (SCO—RF) complex was first described almost a century ago, the function of this conspicuous glandular structure of the brain remains enigmatic. Several functional hypotheses have been proposed based on indirect evidence. Briefly, the SCO—RF has been suspected to be involved in: (1) osmoregulation (Palkovits et al. 1965; Leatherland and Dodd 1968), (2) detoxification of the cerebrospinal fluid (CSF) (Olsson 1958; Hess and Sterba 1973; Diederen et al. 1983), (3) mechanoreception (Kolmer 1921), and (4) morphogenesis of the vertebral column and the spinal cord (Hauser 1969; Rühle 1971). However, none of these hypotheses has been properly substantiated.

Keywords

Spinal Cord Ependymal Cell Spinal Segment Central Canal Subcommissural Organ 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bradbury MWB, Lathem W (1965) A flow of cerebrospinal fluid along the central canal of the spinal cord of the rabbit and communications between this canal and the sacral subarachnoid space. J Physiol 181: 785–800PubMedGoogle Scholar
  2. Bruni JE, Reddy K (1987) Ependyma of the central canal of the rat spinal cord: a light and transmission electron microscopic study. J Anat 152: 55–70PubMedGoogle Scholar
  3. Cserr HF (1988) Role of secretion and bulk flow of brain interstitial fluid in brain volume regulation. Ann N Y Acad Sci 529: 9–20PubMedCrossRefGoogle Scholar
  4. Diederen JH, Vullings HGB, Rombout JHWM, de Gunst-Schoonderwoerd ATM (1983) The subcommissural organ-liquor fibre complex: the binding of catecholamines to the liquor fibre in frogs of the Rana esculenta complex. Acta Zool (Stockh) 64: 47–53CrossRefGoogle Scholar
  5. Graham RC, Karnovsky M (1966) The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem 14: 291–302PubMedCrossRefGoogle Scholar
  6. Hauser R (1969) Abhängigkeit der normalen Schwanzregeneration bei Xenopus-Larven von einem diencephalen Faktor im Zentralkanal. Wilhelm Roux Arch Entwicklungsmech Org 163: 221–247CrossRefGoogle Scholar
  7. Hauser R (1972) Morphogenetic action of the subcommissural organ on tail regeneration in Xenopus larvae. Wihelm Roux Arch Entwickl Mech Org 169: 170–184CrossRefGoogle Scholar
  8. Hess J, Sterba G (1973) Studies concerning the function of the complex subcommissural organ-liquor fibre: the binding ability of the liquor fibre to pyrocatechin derivates and its functional aspects. Brain Res 58: 303–312PubMedCrossRefGoogle Scholar
  9. Hill JR (1957) The influence of drugs on ciliary activity. J Physiol 139: 157–166PubMedGoogle Scholar
  10. Irigoin C, Rodríguez EM, Heinrichs M, Frese K, Herzog S, Oksche A, Rott R (1990) Immunocytochemical study of the subcommissural organ of rats with postnatal induced hydrocephalus. Exp Brain Res 82: 384–392PubMedCrossRefGoogle Scholar
  11. Kolmer W (1921) Das “Sagittalorgan” der Wirbeltiere. Z Anat 60: 652–717CrossRefGoogle Scholar
  12. Krisch B, Leonhardt H, Oksche A (1984) Compartments and perivascular arrangement of the meninges covering the cerebral cortex of the rat. Cell Tissue Res 238: 459–474PubMedCrossRefGoogle Scholar
  13. Leatherland JF, Dodd JM (1968) Studies on the structure, ultrastructure and function of the subcommissural organ Reissner’s fibre complex of the European eel Anguilla anguilla L.Z Zellforsch 89: 533–549Google Scholar
  14. Newberne PM (1962) The subcommissural organ of the vitamin B12 deficient rat. J Nutr 76: 393–414PubMedGoogle Scholar
  15. Oksche A (1961) Vergleichende Untersuchungen über die sekretorische Aktivität des Subkommissuralorgans und den Gliacharakter seiner Zellen. Z Zellforsch 54: 549–612PubMedCrossRefGoogle Scholar
  16. Olsson R (1958) Studies on the subcommissural organ. Acta Zool (Stockholm) 39: 71–102CrossRefGoogle Scholar
  17. Olsson R (1961) Subcommissural ependyma and pineal organ development in human fetuses. Gen Comp Endocrinol 1: 117–123PubMedCrossRefGoogle Scholar
  18. Palkovits M, Monos E, Fachet J (1965) The effect of the subcommissural organ lesions on aldosterone production in the rat. Acta Endocrinol (Copenh) 48: 169–176Google Scholar
  19. Rafols JA, Goshgarian G (1985) Spinal tanycytes in the adult rat: a correlative Golgi gold-toning study. Anat Ree 211: 75–86CrossRefGoogle Scholar
  20. Rennels ML, Gregory TF, Blaumanis OR, Fujimoto K, Grady PA (1985) Evidence for a “paravascular” fluid circulation in the mammalian central nervous system, provided by the rapid distribution of tracer protein throughout the brain from the subarachnoid space. Brain Res 326: 47–63PubMedCrossRefGoogle Scholar
  21. Rodríguez EM, Oksche A, Hein S, Rodríguez S, Yulis R (1984) Comparative immunocytochemical study of the subcommissural organ. Cell Tissue Res 237: 427–441PubMedGoogle Scholar
  22. Rodríguez EM, Oksche A, Rodríguez S, Hein S, Peruzzo B, Schoebitz K, Herrera H (1987) The subcommissural organ and Reissner’s fiber: Fine structure and cytochemistry. In: Gross PM (ed) Circumventricular organs and body fluids, vol 2. CRC Press, Boca Raton, pp 3–41Google Scholar
  23. Rodríguez EM, Rodríguez S, Schoebitz K, Yulis CR, Hoffmann P, Manns V, Oksche A (1989) Light- and electron-microscopic investigation of the rat subcommissural organ grafted under the kidney capsule, with particular reference to immunocytochemistry and lectin histochemistry. Cell Tissue Res 258: 499–514PubMedCrossRefGoogle Scholar
  24. Rodríguez S, Rodríguez EM, Jara P, Peruzzo B, Oksche A (1990) Single injection into the cerebrospinal fluid of antibodies against the secretory material of the subcommissural organ reversibly blocks formation of the Reissner’s fiber: immunocytochemical investigation in the rat. Exp Brain Res 81: 113–124PubMedCrossRefGoogle Scholar
  25. Rühle HJ (1971) Anomalien im Wachstum der Achsenorgane nach experimenteller Ausschaltung des Komplexes SCO-Reissnerscher Faden. Untersuchungen am Rippenmolch (Pleurodeles waltli Michah 1830). Acta Zool (Stockh) 52: 23–68CrossRefGoogle Scholar
  26. Sokal RR, Rohlf FJ (1981) Biometry: the principles and practice of statistics in biological research. Freeman, San Francisco, pp 440–445Google Scholar
  27. Takeuchi IK, Takeuchi YK (1986) Congenital hydrocephalus following X-irradiation of pregnant rats on an early gestational day. Neurobehavioral Toxicol Teratol 8: 143–150Google Scholar
  28. Takeuchi IK, Kimura R, Matsuda M, Shoji R (1987) Absence of subcommissural organ in the cerebral aqueduct of congenital hydrocephalus spontaneously occurring in MT/Hokldr mice. Acta Neuropathol (Berl) 73: 320–322CrossRefGoogle Scholar
  29. Wagner HJ, Pilgrim Ch, Brandl J (1974) Penetration and removal of horseradish peroxidase injected into the cerebrospinal fluid: role of cerebral perivascular spaces, endothelium and microglia. Acta Neuropathol (Berl) 27: 299–315CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • P. Fernández-Llebrez
  • M. Cifuentes
  • J. M. Grondona
  • J. Pérez
  • E. M. Rodríguez

There are no affiliations available

Personalised recommendations