PET Examination of Central D2 Dopamine Receptor Occupancy in Relation to Extrapyramidal Syndromes in Patients Being Treated with Neuroleptic Drugs

  • L. Farde
  • A.-L. Nordström
Conference paper
Part of the Psychopharmacology Series book series (PSYCHOPHARM, volume 10)

Abstract

Positron emission tomography (PET) and suitable radioligands have been used to determine D2 dopamine receptor occupancy in the basal ganglia of patients undergoing neuroleptic drug treatment. The dopamine hypothesis of antipsychotic drug action has been supported by consistent PET findings of a high D2 dopamine receptor occupancy in patients treated with conventional clinical doses of chemically distinct classes of antipsychotic drugs (Farde et al. 1988; Smith et al. 1988; Baron et al. 1989).

Keywords

Dopamine Haloperidol Clozapine Dystonia Sulpiride 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Andén NE, Stock G (1973) Effect of clozapine on the turnover of dopamine in the corpus striatum and the limbic system. J Pharm Pharmacol 25: 346PubMedCrossRefGoogle Scholar
  2. Baron JC, Martinot JL, Cambon H, Boulenger JP, Poirier MF, Caillard V, Blin J, Huret JD, Loc’h C, Maziére B (1989) Striatal dopamine receptor occupancy during and following withdrawal from neuroleptic treatment: correlative evaluation by positron emission tomography and plasma prolactine levels. Psychopharmacology (Berl) 99: 463–472CrossRefGoogle Scholar
  3. Barnes TRE (1989) A rating scale for drug-induced akathisia. Br J Psychiatry 154: 672–676PubMedCrossRefGoogle Scholar
  4. Bergström M, Boethius J, Eriksson L, Greitz T, Ribbe T, Widen L (1981) Head fixation device for reproducible positron alignment in transmission CT and positron emission tomography. J Comput Assist Tomogr 8: 74–87Google Scholar
  5. Bing R (1923) Über einige bemerkenswerte Begleiterscheinigungen der extrapyramidalen Rigidität (Akathesie - Mocrographie - Kinesia paradoxica). Schweiz Med Wochenschr 53: 167–171Google Scholar
  6. Cortés R, Camps M, Gueye B, et al. (1989) Dopamine receptors in human brain: autoradiographic distribution of D1 and D2 sites in Parkinson syndrome of different etiology. Brain Res 483: 30–38PubMedCrossRefGoogle Scholar
  7. ECDEU (1976) Assessment manual for psychopharmacology. US Department of Health, Education and Welfare, WashingtonGoogle Scholar
  8. Farde L, Ehrin E, Eriksson L, Greitz T, Hall H, Hedström C-G, Litton J-E, Sedvall G (1985) Substituted benzamides as ligands for visualization of dopamine-D2 receptor binding in the living human brain by poistron emission tomography. Proc Natl Acad Sci USA 82: 3863–3867PubMedCrossRefGoogle Scholar
  9. Farde L, Hall H, Ehrin E, Sedvall G (1986) Quantitative analysis of dopamine-D2 receptor binding in the living human brain by positron emission tomography. Science 231: 258–261PubMedCrossRefGoogle Scholar
  10. Farde L, Wiesel F-A, Halldin C, Sedvall G (1988) Central D2-dopamine receptor occupancy in schizophrenic patients treated with antipsychotic drugs. Arch Gen Psychiatry 45: 71–78PubMedGoogle Scholar
  11. Farde L, Wiesel F-A, Halldin C, Stone-Elander S, Nordström A-L, Hall H, Sedvall G (1990) D2-dopamine receptor characteristics in neuroleptic-naive patients with schizophrenia - a PET-study with [llCJraclopride. Arch Gen Psychiatry 47: 213–219PubMedGoogle Scholar
  12. Farde L, Nordström A-L, Wiesel F-A, Pauli S, Halldin C, Sedvall G (1992) PET-analysis of central Dl- and D2-dopamine receptor occupancy in patients treated with classical neuroleptics and clozapine - relation to extrapyramidal side effects. Arch Gen Psychiatry 49: 538–544PubMedGoogle Scholar
  13. Halldin C, Farde L, Högberg T, Hall H, Stöm P, Ohlberger A, Solin O (1991) A comparative PET-study of five carbon-11 or fluorine-18 labelled salicylamides: preparation and in vitro dopamine D2 receptor binding. Nucl Med Biol 8: 871–881Google Scholar
  14. Litton J, Bergström L, Eriksson L, Bohm C, Blomqvist G, Kesselberg M (1984) Performance study of the PC-384 positron camera system for emission tomography of the brain. J Comput Assist Tomogr 8: 74–87PubMedCrossRefGoogle Scholar
  15. Ryan F, Joiner L, Ryan A Jr (1985) The minitab handbook, 2nd edn. Duxbury Boston, pp 185–190Google Scholar
  16. Shapiro SS, Wilk MB (1972) An analysis of variance test for normality (complete samples). Biometrika 52: 591Google Scholar
  17. Simpson GM, Angus JWS (1970) A rating scale for extrapyramidal side effects. Acta Psychiatr Scand 45 Suppl 212: 11–19CrossRefGoogle Scholar
  18. Smith M, Wolf AP, Brodie JD, Arnett CD, Barouche F, Shiue CY, Fowler JS, Russell JAG, MacGregor RR, Wolkin A, Angrist B, Rotrosen J, Peselow E (1988) Serial [18F]N-methylspiperone PET studies to measure changes in antipsychotic drug D-2 receptor occupancy in schizophrenic patients. Biol Psychiatry 23: 653–663PubMedCrossRefGoogle Scholar
  19. Sokoloff P, Giros B, Martres MP, Bouthenet ML, Schwartz JC (1990) Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347: 146–151PubMedCrossRefGoogle Scholar
  20. Van Tol H, Bunzow J, Guan H, Sunahara R, Seeman P, Niznik H, Civelli O (1991) Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 350: 610–614PubMedCrossRefGoogle Scholar
  21. Wilson SA, Kinnier JW (1940) Encephalitis. In: Bruce AN (ed) Neurology, vols 1 and 2. A William Wood book. Williams and Wilkins, Baltimore, pp 118, (vol 1), 793 (vol 2 )Google Scholar
  22. Wong DF, Gjedde A, Wagner HN Jr (1986) Quantification of neuroreceptors in the living human brain. I. Irreversible binding of ligands. J Cereb Blood Flow Metab 6: 137–146PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • L. Farde
    • 1
  • A.-L. Nordström
    • 1
  1. 1.Department of Psychiatry and PsychologyKarolinska Institutet and HospitalStockholmSweden

Personalised recommendations