Skip to main content

Mineralization

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 107))

Abstract

The critical role of cells in biologic mineralization is becoming more and more evident. The following observations point to cells as the most important controlling factor in the initiation and propagation of mineral: (1) During development, cell-derived inductive signals direct skeletal cells to enter pathways of differentiation characteristic of mineralizing tissues. (2) Skeletal cells secrete the extracellular matrix into which mineral is selectively deposited. (3) Differentiated skeletal cells generate matrix vesicles (MVs) which are slectively placed in the matrix to serve as initial sites for mineral deposition and to control the distribution of mineral. (4) Cells control the composition of the matrix, thereby promoting or inhibiting mineral deposition. (5) Cells control the ionic and chemical milieu in which mineralization occurs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acenzi A, Bonucci E, Bocciarelli DS (1965) An electron microscope study of osteon calcification. J Ultrastruct Res 12:287-303

    Google Scholar 

  • Akisaka T, Gay CV (1985a) The plasma membrane and matrix vesicles of mouse growth plate chondrocytes during differentiation as revealed in freeze-fracture replicas. Am J Anat 173:269-286

    PubMed  CAS  Google Scholar 

  • Akisaka T, Gay CV (1985b) Ultrastructural localization of calcium-activated adenosine tri-phosphatase (Ca2+-ATPase) in growth plate cartilage. J Histochem Cytochem 33:925-932

    PubMed  CAS  Google Scholar 

  • Akisaka T, Gay CV (1986) Ultrastructural demonstration of p-nitrophenyl phosphatase (p-NPPase) activity in the epiphyseal growth plate. Acta Histochem Cytochem 19:21-29

    CAS  Google Scholar 

  • Akisaka T, Subita GP, Shiginaga Y (1986) Ultrastructural observations on chick bone processed by quick freezing and freeze-substitution. Cell Tissue Res 247:469-475

    Google Scholar 

  • Akisaka T, Kawaguchi H, Subita GP, Shigenaga Y, Gay CV (1988) Ultrastructure of matrix vesicles in chick growth plate as revealed by quick freezing and freeze- substition. Calcif Tissue Int 42:383-393

    PubMed  CAS  Google Scholar 

  • Ali SY, Evans L (1973) The uptake of [45Ca] calcium ions by matrix vesicles isolated from calcifying cartilage. Biochem J 134:647-650

    PubMed  CAS  Google Scholar 

  • Ali SY, Sajdera SW, Anderson HC (1970) Isolation and characterization of calcifying matrix vesicles from epiphyseal cartilage. Proc Natl Acad Sci USA 67:1513-1520

    PubMed  CAS  Google Scholar 

  • Ali SY, Gray JC, Wisby A, Phillips M (1977) Preparation of thin cryosections for electron probe analysis of calcifying cartilage. J Microsc 111:65-76

    PubMed  CAS  Google Scholar 

  • Anderson HC (1969) Vesicles associated with calcification in the matrix of epiphyseal cartilage. J Cell Biol 41:59-72

    PubMed  CAS  Google Scholar 

  • Anderson HC (1976) Osteogenetic epithelial - mesenchymal cell interactions. Clin Orthop 119:211-224

    PubMed  Google Scholar 

  • Anderson HC (1978) Introduction to the second conference on matrix vesicle calcification. Metab Bone Dis Rel Res 1:83-88

    Google Scholar 

  • Anderson HC (1983) Calcific diseases: a concept. Arch Pathol Lab Med 107:341-348

    PubMed  CAS  Google Scholar 

  • Anderson HC (1985) Matrix vesicle calcification: review and update. In: Peck WA (ed) Bone and mineral research, vol 2. Elsevier, New York, pp 109-149

    Google Scholar 

  • Anderson HC (1988) Mechanisms of pathologic calcification. Rheum Clin North Am 14:303-319

    CAS  Google Scholar 

  • Anderson HC (1989) Mechanism of mineral formation in bone. Lab Invest 60:320–330

    PubMed  CAS  Google Scholar 

  • Anderson HC (1990) The role of cells versus matrix in bone induction. Connect Tiss Res 24:3-12

    CAS  Google Scholar 

  • Anderson HC, Hsu HHT (1978) A new method to measure 45Ca accumulation by matrix vesicles in slices of rachitic growth plate cartilage. Metab Bone Dis Rel Res 1:193-198

    Google Scholar 

  • Anderson HC, Reynolds JJ (1973) Pyrophosphate stimulation of initial mineralization in cultured embryonic bones. Fine structure of matrix vesicles and their role in mineralization. Dev Biol 34:211-227

    PubMed  CAS  Google Scholar 

  • Anderson HC, Sajdera SW (1971) Fine structure of bovine nasal cartilage. Extraction as a technique to study proteoglycans and collagen in cartilage matrix. J Cell Biol 49:650-663

    PubMed  CAS  Google Scholar 

  • Anderson HC, Sajdera SW (1976) Calcification of rachitic cartilage to study matrix vesicle function. Fed Proc 35:148-153

    PubMed  CAS  Google Scholar 

  • Anderson HC, Merker PC, Fogh J (1964) Formation of tumors containing bone after intramuscular injection of transformed human amnion cells (FL) into cortisone- treated mice. Am J Pathol 44:507-519

    PubMed  CAS  Google Scholar 

  • Anderson HC, Matsuzawa T, Sajdera SW, Ali SY (1970) Membranous particles in calcifying cartilage matrix. Trans N Y Acad Sci (Series II) 32:619-630

    CAS  Google Scholar 

  • Anderson HC, Cecil R, Sajdera SW (1975) Calcification of rachitic rat cartilage in vitro by extracellular matrix vesicles. Am J Pathol 79:237-255

    PubMed  CAS  Google Scholar 

  • Anderson HC, Stechschulte DJ Jr, Collins E, Jacobs D, Morris DC, Hsu HHT, Redford P, Zeiger J (1990) Matrix vesicle biogenesis in vitro by rachitic and normal rat chondrocytes. Am J Pathol 136:391-398

    PubMed  CAS  Google Scholar 

  • Anderson HC, Kanabe S, Vaananan HK, Oppliger I, Morris DC, Bohn WW, Hsu HHT (1984) Phosphatases and matrix vesicle calcification. In: Cohn DV, Potts JT, Fujita T (eds) Endocrine control of bone and calcium metabolism. Elsevier, Amsterdam, pp 410-413

    Google Scholar 

  • Anderson RE, Schraer H, Gay CV (1982) Ultrastructural immunocytochemical localization of carbonic anhydrase in normal and calcitonin-treated chick osteoclasts. Anat Rec 204:9-20

    PubMed  CAS  Google Scholar 

  • Antosz ME, Bellows CG, Aubin JE (1989) Effects of transforming growth factor ß and epidermal growth factor on cell proliferation and the formation of bone nodules in isolated fetal rat calvaria cells. J Cell Physiol 140:386-395

    PubMed  CAS  Google Scholar 

  • Arsenault AL (1989) A comparative electron microscopic study of apatite cyrstals in collagen fibrils of rat bone, dentin and calcified turkey leg tendons. Bone Miner 6:165-177

    PubMed  CAS  Google Scholar 

  • Arsenault AL (1991) Vectorial sequence of mineralization in the turkey leg tendon determined by electron microscopic imaging. Calcif Tissue Int 48:46-55

    PubMed  CAS  Google Scholar 

  • Arsenis C, Hackett MH, Huang S-M (1976) Resolution specificity and transphosphorylase activity of calcifying cartilage alkaline phosphatases. Calcif Tissue Res 20:159-171

    CAS  Google Scholar 

  • Balmain N, Holton P, Cuisinier-Gleizes P, Mathieu H (1989) Immunoreactive calbindin-D9K localization in matrix vesicle initiated calcification in rat epiphyseal cartilage: an immunoelectron microscopic study. J Bone Miner Res 4:565-575

    PubMed  CAS  Google Scholar 

  • Baron R (1989) Molecular mechanisms of bone resorption by the osteoclast. Anat Rec 224:317-324

    PubMed  CAS  Google Scholar 

  • Bellows CG, Aubin JE, Heersch JNM (1991) Initiation and progression of mineralization of bone nodules formed in vitro: the role of alkaline phosphatase and organic phosphate. Bone Miner 14:27-40

    PubMed  CAS  Google Scholar 

  • Bernard GW (1972) Ultrastructural observations of initial calcification in dentin and enamel. J Ultrastruct Res 41:1-17

    PubMed  CAS  Google Scholar 

  • Bernard GW (1978) Ultrastructural localization of alkaline phosphatase in initial intramembranous ossification. Clin Orthop 135:218-225

    PubMed  Google Scholar 

  • Bohn WW, Stein RM, Hsu HHT, Morris DC, Anderson HC (1984) Isolation of a plasma membrane-enriched fraction from collagenase suspended rachitic rat growth plate chondrocytes. J Orthop Res 1:319-324

    PubMed  CAS  Google Scholar 

  • Bolander ME, Young MF, Fisher LW, Yamada Y, Termine JD (1988) Osteonectin cDNA sequence reveals potential binding regions for calcium and hydroxyapatite and shows homologies with both a basement membrane protein (SPARC) and a serine proteinase inhibitor (OVOMUCOID). Proc Natl Acad Sci USA 85:2919-2923

    PubMed  CAS  Google Scholar 

  • Bonucci E (1970) Fine structure and histochemistry of calcifying globules in epiphyseal cartilage. Z Zellforsch and Mikrosk Anat 103:192-217

    CAS  Google Scholar 

  • Borg TF, Runyon R, Wuthier RE (1981) A freeze-fracture study of avian epiphyseal cartilage differentiation. Anat Rec 199:449-457

    PubMed  CAS  Google Scholar 

  • Boskey AL (1989) Non collagenous matrix proteins and their role in mineralization. Bone Miner 6:111-123

    PubMed  CAS  Google Scholar 

  • Boskey AL, Posner AS (1977) In vitro nucleation of hydroxyapatite by a bone calcium-phospholipid-phosphate complex. Calcif Tissue Res 22 [Suppl]: 197-201

    PubMed  Google Scholar 

  • Boskey AL, Timchak DM (1989) Phospholipid changes in the bones of the vitamin- D deficient phosphate deficient, immature rat. Metab Bone Dis Rel Res 5:81–85

    Google Scholar 

  • Boskey AL, Posner AS, Lane JM, Goldberg MR, Cordelia DM (1980) Distribution of lipids associated with mineralization in the bovine epiphyseal growth plate. Arch Biochem Biophys 199:305-311

    PubMed  CAS  Google Scholar 

  • Boskey AL, Wians FH Jr, Hauschka PV (1985) The effect of osteocalcin on in vitro lipid induced hydroxyapatite formation and seeded hydroxyapatite growth. Calcif Tissue Int 37:57-62

    PubMed  CAS  Google Scholar 

  • Boyan BD (1985) Proteoplipid-dependent calcificiation. In: Butter WT (ed) The chemistry and biology of mineralized tissue. EBSCO Media, Birmingham, pp 125-131

    Google Scholar 

  • Boyan BD, Schwartz Z, Carnes DL, Ramirez V (1988) The effects of vitamin D metabolites on the plasma and matrix vesicle membranes of growth and resting cartilage cells in vitro. Endocrinology 122:2851-2860

    PubMed  CAS  Google Scholar 

  • Boyan-Salyers BD, Boskey AL (1980) Relationship between proteolipids and calcium-phospholipid-phosphate complexes in Bacterionema matruchotii calcification. Calcif Tissue Int 30:167-174

    PubMed  CAS  Google Scholar 

  • Boyde A, Shapiro IM (1987) Morphological observations concerning the pattern of mineralization of the normal and the rachitic chick growth cartilage. Anat Embryol (Berl) 175:457-466

    CAS  Google Scholar 

  • Brown CC, Hembry RM, Reynolds JJ (1989) Immunolocalization of metalloproteinases and their inhibitor in the rabbit growth plate. J Bone Joint Surg [Am] 71:580-593

    CAS  Google Scholar 

  • Brown RA, Taylor C, McLaughlin B, McFarland CD, Weiss JB, Ali SY (1987) Epiphyseal growth plate cartilage and chrondrocytes in mineralizing cultures produce a low molecular mass, angiogenic procollagenase activator. Bone Miner 3:143-158

    PubMed  CAS  Google Scholar 

  • Buckwalter JA (1987) Changes in proteoglycan aggregates during cartilage mineralization. Calcif Tissue Int 41:228-236

    PubMed  CAS  Google Scholar 

  • Butler WT (1989) The nature and significance of osteopontin. Connect Tissue Res 23:123-136

    PubMed  CAS  Google Scholar 

  • Campo RD, Betz RR (1987) Loss of proteoglycans during decalcification of fresh metaphysis with disodium ethylenediaminetetraacetate (EDTH). Calcif Tissue Int 41:52-55

    PubMed  CAS  Google Scholar 

  • Campo RD, Romano JE (1986) Changes in cartilage proteoglycans associated with calcification. Calcif Tissue Int 39:175-184

    PubMed  CAS  Google Scholar 

  • Caswell Am, Russell RGG (1985) Identification of ectonucleoside triphosphate pyrophosphatase in human articular chondrocytes in monolayer culture. Biochim Biophys Acta 847:40-47

    PubMed  CAS  Google Scholar 

  • Caswell AM, Whyte MP, Russell RGG (1991) Hypophosphatasia and the extracellular metabolism of inorganic pyrophosphate: clinical and laboratory aspects. Crit Rev Clin Lab Sci 28:175-232

    PubMed  CAS  Google Scholar 

  • Cecil RNA, Anderson HC (1978) Freeze-fracture studies of matrix vesicle calcification in epiphyseal growth plate. Metab Bone Dis Rel Res 1:89-97

    Google Scholar 

  • Chen CC, Boskey AL, Rosenberg L (1984) The inhibitory effect of cartilage proteoglycans on hydroxapatite growth. Calcif Tissue Int 36:285-290

    PubMed  CAS  Google Scholar 

  • Cotmore JM, Nichols G Jr, Wuthier RE (1971) Phospholipid-calcium phosphate complex: enhanced calcium migration in the presence of phosphate. Science 172:1339-1341

    PubMed  CAS  Google Scholar 

  • Crenshaw MA, Ramp WK, Gonnerman WA, Toverud SU (1974) Effects of dietary vitamin D levels on the in vitro mineralization of chick metaphysis. Proc Soc Exp Biol Med 146:488-493

    PubMed  CAS  Google Scholar 

  • Crumpton MJ, Dedman JR (1990) Protein terminology tangle. Nature 345:212

    PubMed  CAS  Google Scholar 

  • Cuervo LA, Pita JC, Howell DS (1973) Inhibition of calcium phosphate mineral growth by proteoglycan aggregate fractions in a synthetic lymph. Calcif Tissue Res 13:1-10

    PubMed  CAS  Google Scholar 

  • DeLuca HF (1985) The vitamin D-calcium axis-1983. In: Rubin RP, Weiss GB, Putney JW Jr (eds) Calcium in biological systems. Plenum, New York, pp 491-511

    Google Scholar 

  • Desteno CV, Feagin FF (1975) Effect of matrix bound phosphate and fluoride on mineralization of dentin. Calcif Tissue Int 17:151-159

    CAS  Google Scholar 

  • Dickson IA, Hall AK, Jande SS (1984) The influence of dihydroxylated vitamin D metabolites on bone formation in the chick. Calcif Tissue Int 36:114-122

    PubMed  CAS  Google Scholar 

  • Dudley HR, Spiro D (1961) The fine structure of bone cells. J Biophys Biochem Cytol 11:627-649

    PubMed  CAS  Google Scholar 

  • Dziewaitkowski DD, Majznerski LL (1985) Role of proteoglycans in endochondral ossification: inhibition of calcification. Calcif Tissue Int 37:560-564

    Google Scholar 

  • Eanes Ed, Hailer AW (1985) Liposome-mediated calcium phosphate formation in metastable solutions. Calcif Tissue Int 37:390-394

    PubMed  CAS  Google Scholar 

  • Ehrlich MG, Tebor GB, Armstrong AL, Mankin HJ (1985) Comparative study of neutral proteoglycanase activity by growth plate zone. J Orthop Res 3: 269-276

    PubMed  CAS  Google Scholar 

  • Eisenman DR, Glick PL (1972) Ultrastructure of initial crystal formation in dentin. J Ultrastruct Res 41:18-28

    Google Scholar 

  • Ennever J, Boyan-Salyers B, Riggan LJ (1977) Proteolipid and bone matrix calcification. J Dent Res 56:967-970

    PubMed  CAS  Google Scholar 

  • Ennever J, Riggan LJ, Vogel JJ, Boyan-Salyers B (1978) Characterization of Bacterionema matruchotii calcification nucleator. J Dent Res 51:637-642

    Google Scholar 

  • Fallon MD, Whyte MP, Teitlebaum SL (1980) Stereospecific inhibition of alkaline- phosphatase by L-tetramisole prevents in vitro cartilage calcification. Lab Invest 43:489-494

    PubMed  CAS  Google Scholar 

  • Farnum GE, Wilsman NJ (1989) Cellular turnover at the chondro-osseous junction of growth plate cartilage: analysis by serial sections at the light microscopic level. J Orthop Res 7:654-666

    PubMed  CAS  Google Scholar 

  • Fedde KN, Lane CC, Whyte MP (1988) Alkaline phosphatase is an ectoenzyme that acts on micro-molar concentrations of natural substrates at physiologic pH in human osteosarcoma (SAOS-2) cells. Arch Biochem Biophys 264:400-409

    PubMed  CAS  Google Scholar 

  • Fine N, Binderman I, Somjen D, Earon Y, Edelstein S, Weisman Y (1985) Angioradiographic localization of 24R, 25-dihydroxy vitamin D3 in epiphyseal cartilage. Bone 6:99-104

    PubMed  CAS  Google Scholar 

  • Fleisch H, Bisaz S (1962) Mechanism of calcification: Inhibitory role of pyrophosphate. Nature 195:911

    PubMed  CAS  Google Scholar 

  • Fleisch H, Straumann F, Schenk R, Bisaz S, Allgower M (1966) Effect of condensed phosphates on calcification of chick embryo femurs in tissue culture. Am J Physiol 211:821-825

    PubMed  CAS  Google Scholar 

  • Franceschi RT, Young J (1990) Regulation of alkaline phosphatase by 1,25- didydroxy-vitamin D3 and ascorbic acid in bone derived cells. J Bone Miner Res 5:1157-1167

    PubMed  CAS  Google Scholar 

  • Francis MD, Russel RGG, Fleisch H (1969) Diphosphonates inhibit formation of calcium phosphate crystals in vitro and pathological calcification in vivo. Science 165:1264-1266

    PubMed  CAS  Google Scholar 

  • Franzen A, Heinegaard D, Reiland S, Olsson S-E (1982) Proteoglycans and calcification of cartilage in the femoral head epiphysis of the immature rat. J Bone Joint Surg [Am] 64:600-609

    Google Scholar 

  • Fujisawa R, Kuboki Y, Sasaki S (1987) Effects of dentin phosphoryn on precipitation of calcium phosphate in gel in vitro. Calcif Tissue Int 41:44-47

    PubMed  CAS  Google Scholar 

  • Gay CV, Muller WJ (1974) Carbonic anhydrase and osteoclasts: localization by labeled inhibitor autoradiography. Science 183:432-434

    PubMed  CAS  Google Scholar 

  • Gay CV, Faleski EJ, Schraer H, Schraer R (1974) Localization of carbonic anhydrase in avian gastric mucosa, shell gland and bone by immuno- histochemistry. J Histochem Cytochem 22:819-825

    PubMed  CAS  Google Scholar 

  • Gay CV, Schraer H, Hargest TE Jr (1978) Ultrastructure of matrix vesicles and mineral in unfixed embryonic bone. Metab Bone Dis Rel Res 1:105-108

    Google Scholar 

  • Gay CV, Anderson RE, Schraer H, Howell DS (1982) Identification of carbonic anhydrase in chick growth plate cartilage. J Histochem Cytochem 30:391-394

    PubMed  CAS  Google Scholar 

  • Gay CV, Schraer H, Anderson RE, Hanmin C (1984) Current studies on the location and function of carbonic anhydrase in osteoclasts. Ann NY Acad Sci 429:473-478

    PubMed  CAS  Google Scholar 

  • Genge BR, Sauer GR, Wu LNY, McClean FM, Wuthier RE (1988) Correlation between loss of alkaline phosphatase activity and accumulation of calcium during matrix vesicle mediated mineralization. J Biol Chem 263:118513-18519, 1988

    Google Scholar 

  • Genge BR, Wu LNY, Wuthier RE (1989) Identification of phospholipid-dependent calcium-binding proteins as constituents of matrix vesicles. J Biol Chem 264:10917-10921

    PubMed  CAS  Google Scholar 

  • Genge BR, Wu LNY, Wuthier RE (1990) Differential fractionation of matrix vesicle proteins. Further characterization of the acidic phospholipid-dependent Ca2+- binding proteins. J Biol Chem 288:4703-4710

    Google Scholar 

  • Gibson GJ, Bearman CH, Flint MH (1986) The immunoperoxidase localization of type X collagen in chick cartilage and lung. Collagen Res Rel 6:163-184

    CAS  Google Scholar 

  • Giraud MM (1977) Carbonic anhydrase and integument calcification in crab Carcinus maenas Linne (original title in French). Comp Rend Acad Sci D 284/6:453–456

    CAS  Google Scholar 

  • Glaser JH, Conrad EH (1981) Formation of matrix vesicles by cultured chick embryo chondrocytes. J Biol Chem 256:12607-12611

    PubMed  CAS  Google Scholar 

  • Glimcher MJ (1954) Molecular biology of mineralized tissues with particular reference to bone. Rev Mod Phys 31:359-393

    Google Scholar 

  • Glimcher MJ (1989) Mechanism of calcification: role of collagen fibrils and collagen- phosphoprotein complexes in vitro and in vivo. Anat Rec 224:139-153

    PubMed  CAS  Google Scholar 

  • Golub EE, Schattschneider SC, Berthold P, Burke A, Shapiro IM (1983) Induction of chondrocyte vésiculation in vitro. J Biol Chem 258:616-621

    PubMed  CAS  Google Scholar 

  • Gorski JP, Griffin D, Dudley G, Stanford C, Thomas R, Huang C, Lai E, Karr B, Solursh M (1990) Bone acidic glycoprotein-75 is a major synthetic product of osteoblastic cells and localized as 75 and/or 50-kDa forms in mineralized phases of bone and growth plate and in serum. J Biol Chem 265:14956-14963

    PubMed  CAS  Google Scholar 

  • Granda JL, Posner AS (1971) Distribution of four hydrolases in the epiphyseal plate. Clin Orthop 74:269-272

    PubMed  CAS  Google Scholar 

  • Gunness-Hey M, Hock JM (1984) Increased trabecular low mass in rats treated with human synthetic parathyroid hormone. Metab Bone Dis Rel Res 5:177-181

    CAS  Google Scholar 

  • Habuchi H, Conrad HE, Glaser JH (1985) Coordinate regulation of collagen and alkaline phosphatase levels in chick embryo chondrocytes. J Biol Chem 260:13029-13032

    PubMed  CAS  Google Scholar 

  • Hauschka PV, Lian JB, Gallop PM (1975) Direct identification of the calcium- binding amino acid, ^-carboxyglutamic acid, in mineralized tissue. Proc Natl Acad Sci USA 72:3925-3929

    PubMed  CAS  Google Scholar 

  • Heldin CH, Wasteson A, Fryklund L, Westermark B (1981) Somatomedin B: mitogenic activity derived from contaminant epidermal growth factor. Science 213:1122-1123

    PubMed  CAS  Google Scholar 

  • Hinek A, Reiner A, Poole AR (1987) The calcification of cartilage matrix in chondrocyte culture: studies of the c-propeptide of Type II collagen (chondrocalcin). J Cell Biol 104:1435-1441

    PubMed  CAS  Google Scholar 

  • Hirschman A, Dziewaitkowski DD (1966) Protein-polysaccharide loss during endochondral ossification. Immunochemical evidence. Science 154:393-395

    PubMed  CAS  Google Scholar 

  • Hock JM, Hummert JR, Boyce R, Fonseca J, Raisz LG (1987) Resorption is not essential for the stimulation of bone growth by HPTH-(l-34) in rats in vivo. J Bone Miner Res 4:449-458

    Google Scholar 

  • Hock JM, Canalis E, Centrella M (1990) Transforming growth factor beta stimulates bone matrix apposition and bone cell replication in cultured fetal rat calvariae. Endocrinology 126:421-426

    PubMed  CAS  Google Scholar 

  • Howell DS, Pita JC, Marquez JF, Madruga JE (1968) Partition of calcium phosphate and protein in the fluid phase aspirated at calcifying sites in epiphyseal cartilage. J Clin Invest 47:1121-1132

    PubMed  CAS  Google Scholar 

  • Hsu HHT (1983) Purification and partial characterization of ATP- pyrophosphohydrolase from fetal bovine epiphyseal cartilage. J Biol Chem 258:3463-3464

    PubMed  CAS  Google Scholar 

  • Hsu HHT, Anderson HC (1977) A simple and defined method to study calcification by isolated matrix vesicles. Effect of ATP and vesicle phosphatase. Biochem Biophys Acta 500:162-172

    PubMed  CAS  Google Scholar 

  • Hsu HHT, Anderson HC (1978) Calcification of isolated matrix vesicles and reconstituted vesicles from fetal bovine cartilage. Proc Natl Acad Sci USA 75:3805-3808

    PubMed  CAS  Google Scholar 

  • Hsu HHT, Cecil RNA, Anderson HC (1978) The role of adenosine triphosphatase, phospholipids and vesicular structure in the calcification of isolated and reconstituted matrix vesicles. Metab Bone Dis Rel Res 1:169-172

    CAS  Google Scholar 

  • Huggins CB (1931) The formation of bone under the influence of epithelium of the urinary tract. Arch Surg 22:377-408

    Google Scholar 

  • Hunter GK (1987) An ion-exchange mechanism of cartilage calcification. Connect Tiss Res 16:111-120

    CAS  Google Scholar 

  • Isenburg HD, Lavine LS, Weissfullner H (1963) The suppression of mineralization in a coccolithophorid by an inhibitor of carbonic anhydrase. J Protozool 10:477-9

    Google Scholar 

  • Jande SS, Dickson I (1980) Comparative histological study of the effects of high calcium diet and vitamin D supplements on epiphyseal plates of vitamin-D- deficient chicks. Acta Anat 108:463-468

    PubMed  CAS  Google Scholar 

  • Jennings RB, Ganote CE, Reimer KA (1975) Ischemic tissue injury. Am J Pathol 81:179-198

    PubMed  CAS  Google Scholar 

  • Jinguishi S, Joyce M, Roberts A, Sporn M, Muniz O, Howell D, Dean D, Ryan U, Bolander M (1989) Distribution of acidic fibroblast growth factor, basic fibroblast growth factor and transforming growth factor ß1 in rat growth plate. J Bone Miner Res 4:5325

    Google Scholar 

  • Johnson TJ, Morris DC, Anderson HC (1989) Matrix vesicles and calcification of rachitic rat osteoid. J Exp Pathol 4:123-132

    PubMed  CAS  Google Scholar 

  • Joyce ME, Roberts AB, Sporn MB, Bolander ME (1990) Transforming growth factor-β and the initiation of chondrogenesis and osteogenesis in the rat femur. Clin Res 38:407A

    Google Scholar 

  • Kardos TB, Hubbard MJ (1982) Are matrix vesicles apoptotic bodies? In: Dixon AD, Sarnat BG (eds) Factors and mechanisms influencing bone growth. Liss, New York, pp 45-60

    Google Scholar 

  • Kashgarian M, Biemesderfer D, Caplan M, Forbush B (1985) Monoclonal antibody to (Na+, K+) ATPase: immunocytochemical localization along nephron segments. Kidney Int 28:899-913

    PubMed  CAS  Google Scholar 

  • Klapper DG, Svoboda ME, VanWyk JJ (1983) Sequence analysis of somatomedin C: confirmation of identity with insulin-like growth factor-1. Endocrinology 112:2215-2217

    PubMed  CAS  Google Scholar 

  • Kingsley RJ, Watanabe N (1987) Role of carbonic anhydrase in calcification in the Gorgonian Leptogorgia virgulata. J Exp Zool 241:171-180

    CAS  Google Scholar 

  • Landis WJ (1987) A study of calcification in the leg tendons from the domestic turkey. J Ultrastr Mol Str Res 94:217-238

    Google Scholar 

  • Larsson A (1973) Studies on dentinogenesis in the rat. Ultrastructural observations on early dentin formation with special reference to “dentinal globules” and alkaline phosphatase activity. A Anat Entwickl Gesch 142:103-115

    CAS  Google Scholar 

  • Larsson AK (1974) The short-term effects of high doses of ethylene-l-hydroxy-1, 1-diphosphonate upon early dentin formation. Calcif Tissue Res 16:109-127

    PubMed  CAS  Google Scholar 

  • Lawson DE, Fraser DR, Kodicek E, Morris HR, Williams DH (1971) Identification of 1,25-dihydroxycholecalciferol, a new kidney hormone controlling calcium metabolism. Nature 230:228-230

    PubMed  CAS  Google Scholar 

  • Lewinson D, Toister Z, Silbermann M (1982) Quantitative and distributional changes in the activity of alkaline phosphatase during the maturation of cartilage. J Histochem Cytochem 30:261-269

    PubMed  CAS  Google Scholar 

  • Lian JB, Tassinari M, Glowacki J (1984) Resorption of implanted bone prepared from normal and warfarin-treated rats. J Clin Invest 73:1223-1226

    PubMed  CAS  Google Scholar 

  • Linde A, Lussi A (1989) Mineral induction by polyanionic dentin and bone proteins at physiologic ionic conditions. Connect Tissue Res 21:197-203

    PubMed  CAS  Google Scholar 

  • Lohmander A, Hjerpe A (1975) Proteoglycans of mineralizing rib and epiphyseal cartilage. Biochem Biophys Acta 404:93-109

    PubMed  CAS  Google Scholar 

  • Low MG (1987) Biochemistry of the glycosyl-phosphatidylinositol membrane protein anchors. Biochem J 244:1-13

    PubMed  CAS  Google Scholar 

  • Luyten FP, Hascall VC, Nissley SP (1988) Insulin-like growth factors maintain steady state metabolism of proteoglycans in bovine articular cartilage. Arch Biochem Biophys 267:416-425

    PubMed  CAS  Google Scholar 

  • Lyons KM, Pelton RW, Hogan BLB (1990) Organogenesis and pattern formation in the mouse: RNA distribution patterns suggest a role for bone morphogenetic protein-2A (BMP-2A). Development 109:833-844

    PubMed  CAS  Google Scholar 

  • Majeska R, Holwerda DL, Wuthier RE (1979) Localization of phosphatidyl serine in isolated chick epiphyseal cartilage matrix vesicles with trinitrobenzensulfonate. Calcif Tissue Int 27:41-46

    PubMed  CAS  Google Scholar 

  • Marcelli C, Yates AJ, Mundy GR (1990) In vivo effects of human recombinant transforming growth factor ß on bone turnover in normal mice. J Bone Miner Res 5:1087-1096

    PubMed  CAS  Google Scholar 

  • Marquardt H, Todaro GJ (1981) Purification and primary structure of a polypeptide with multiplication-stimulating activity from rat liver cell cultures: homology with human insulin-like growth factor-2. J Biol Chem 256:6859-6865

    PubMed  CAS  Google Scholar 

  • Matsuzawa T, Anderson HC (1971) Phosphatases of epiphyseal cartilage studied by electron microscopic cytochemical methods. J Histochem Cytochem 19:801-808

    PubMed  CAS  Google Scholar 

  • McFarland CD, Brown RA, McLaughlin B, Ali SY, Weiss JB (1990) Production of endothelial cell stimulating angiogenesis factor (ESAF) by chondrocytes during in vitro cartilage calcification. Bone Miner 11:319-333

    PubMed  CAS  Google Scholar 

  • Menanteau J, Neuman WF, Neuman MW (1982) A study of bone proteins which can prevent hydroxyapatite formation. Metab Bone Dis Rel Res 4:157-162

    CAS  Google Scholar 

  • Morris DC, Vaananen HK, Anderson HC (1983) Matrix vesicle calcification in rat epiphyseal growth plate cartilage prepared anhydrously for electron microscopy. Metab Bone Dis Rel Res 5:131—137

    Google Scholar 

  • Morris DC, Vaananen HK, Munoz P, Anderson HC (1986) Light and electron microscopic immunolocalization of alkaline phosphatase in bovine growth plate cartilage. In: Ali SY (ed) Cell mediated calcification and matrix vesicles. Elsevier, Amsterdam, pp 21-26

    Google Scholar 

  • Morris DC, Randall JC, Stechschulte DJ Jr, Zeiger S, Mansur DB, Anderson HC (1990a) Enzyme cytochemical localization of alkaline phosphatase in cultures of chondrocytes derived from normal and rachitic rats. Bone 11:345-352

    PubMed  CAS  Google Scholar 

  • Morris DC, Moylan P, Levine D, Stechschulte DJ Jr, Anderson HC (1990b) Imunochemical and immunocytochemical identification of matrix vesicle proteins. J Bone Miner Res 5:5231

    Google Scholar 

  • Morris DC, Stechschulte DJ Jr, Moylan P, Hermreck A, Anderson HC (1990c) Isolation of matrix vesicles from atherosclerotic plaques. Proc Hugh Lofland conference on art wall metabolism, May 23-26

    Google Scholar 

  • Morris DC, Moylan P, Stechschulte DJ Jr, Anderson HC (1991) Immunochemical and immunocytochemical identification of anchorin CII and type X collagen in rat matrix vesicles. J Bone Miner Res 6 [Suppl 1]:S97

    Google Scholar 

  • Muhlrad A, Setton A, Sela J, Bab I, Deutsch D (1983) Biochemical characterization of matrix vesicles from bone and cartilage. Metab Bone Dis Rel Res 5:93-99

    CAS  Google Scholar 

  • Mundy GR, Bonewald LF (1990) Role of TGF-beta in bone remodeling. Ann NY Acad Sci 593:91-97

    PubMed  CAS  Google Scholar 

  • Murphree S, Hsu HHT, Anderson HC (1982) In vitro formation of crystalline apatite by matrix vesicles isolated from rachitic rat epiphyseal cartilage. Calcif Tissue Int 34:S62-S68

    PubMed  Google Scholar 

  • Narbaitz R, Stumpf WE, Sar M, Huange S, DeLuca HF (1983) Autoradiographic localization of target cells for lδ,5,25-dihydroxy-vitamin D3 in bones from fetal rats. Calcif Tissue Int 35:177-182

    PubMed  CAS  Google Scholar 

  • Nemethcsoka M, Sarkozi A (1981) The effect of proteoglycans of cartilage and oversulfated polysaccharides on the development of calcium-hydroxy-apatite (CHA) crystal formation in vitro. Acta Biol Hung 33:407-417

    Google Scholar 

  • Nilsson A, Isgaard J, Lindahl A (1987) Effects of unilateral arterial infusion of GH and IGF-1 on tibial longitudinal bone growth in hypophysectionized rats. Calcif Tissue Int 40:91-96

    PubMed  CAS  Google Scholar 

  • Ohashi-Takeuchi H, Yamada N, Hosokawa R, Noguchi T (1990) Vesicles with lactate dehydrogenease and alkaline phosphatase present in resting zone of epiphyseal cartilage. Biochem J 266:309-312

    PubMed  CAS  Google Scholar 

  • Owen ME, Cave J, Joyner CJ (1987) Clonal analysis in vitro of osteogenic differentiation of marrow CFU-F. J Cell Sci 87:731-738

    PubMed  Google Scholar 

  • Ozawa H, Najima T (1972) Ultrastructure and cytochemistry of matrix vesicles in developing cartilage and tooth germ. In: 4th international congress on histochemistry and cytochemistry, Kyoto, pp 311-312

    Google Scholar 

  • Ozawa H, Yamamoto T (1983) An application of energy-dispersive X-ray microanalysis for the study of biological calcification. J Histochem Cytochem 31:210-213

    PubMed  CAS  Google Scholar 

  • Palumbo C (1986) A three dimensional ultrastructural study of osteoid-osteocytes in the tibia of chick embryos. Cell Tissue Res 246:125-131

    PubMed  CAS  Google Scholar 

  • Parsons, JA (1976) Parathyroid physiology and the skeleton. In: Bourne GH (ed) Biochemistry and physiology of bone, vol IV, Academic Press, New York, pp 159-226

    Google Scholar 

  • Peress NS, Anderson HC, Sajdera SW (1974) The lipids of matrix vesicles from bovine fetal epiphyseal cartilage. Calcif Tissue Res 14:275-281

    PubMed  CAS  Google Scholar 

  • Pliam NB, Nyiredy KO, Arnaud CD (1982) Parathyroid hormone receptors in avian bone cells. Proc Natl Acad Sci USA 79:2061-2063

    PubMed  CAS  Google Scholar 

  • Poole RA, Pidoux I, Rosenberg L (1982) Role of proteoglycans in endochondral ossification: immunofluorescent localization of link protein and proteoglycan monomer in bovine fetal epiphyseal growth plate. J Cell Biol 92:249-260

    PubMed  CAS  Google Scholar 

  • Poole AR, Pidoux I, Reiner H, Choi H, Rosenberg LC (1984) Association of an extracellular protein (Chondrocalcin) with the calcification of cartilage in endochondral bone formation. J Cell Biol 98:54-65.

    PubMed  CAS  Google Scholar 

  • Price PA, Nishimoto SK (1980) Radioimmunoassay of the vitamin-K dependent protein of bone and its discovery in plasma. Proc Natl Acad Sci USA 77:2234–2238

    PubMed  CAS  Google Scholar 

  • Price PA, Sloper SA (1983) Concurrent warfarin treatment further reduces bone mineral levels in 1,25-dihydroxyvitamin D3-treated rats. J Biol Chem 258:6004–6007

    PubMed  CAS  Google Scholar 

  • Price PA, Williamson MK (1985) Primary structure of bovine matrix Gla protein, a new vitamin-K dependent bone protein. J Biol Chem 260:14971-14975

    PubMed  CAS  Google Scholar 

  • Price PA, Otsuka AS, Poser JP, Kristaponis J, Raman N (1976) Characterization of a y-carboxyglutamic acid-containing protein from bone. Proc Natl Acad Sci USA 73:1447-1451

    PubMed  CAS  Google Scholar 

  • Ralphs JR, Ali SY (1986) Histochemical localization of alkaline phosphatase in rabbit ulnar growth plate. In: Ali SY (ed) Cell mediated calcification and matrix vesicles. Elsevier, Amsterdam, pp 69-74

    Google Scholar 

  • Randall JC, Morris DC, Zeiger S, Masuhara K, Tsuda T, Anderson HC (1989) Presence and activity of alkaline phosphatase in two human osteosarcoma cell lines. J Histochem Cytochem 37:1069-1074

    PubMed  CAS  Google Scholar 

  • Reginato Am, Lash JW, Jimenez SA (1986) Biosynthetic expression of type X collagen in embryonic chick sternum cartilage during development. J Biol Chem 261:2897-2904

    PubMed  CAS  Google Scholar 

  • Register TC, Wuthier RE (1985) Effect of pyrophosphate and two diphosphonates on 45Ca and 32Pi uptake and mineralization by matrix vesicle-enriched fractions and by hydroxyapatite. Bone 6:307-312

    PubMed  CAS  Google Scholar 

  • Register TC, McClean FM, Low MG, Wuthier RE (1986) Roles of alkaline phosphatase and labile internal mineral in matrix vesicle-mediated calcification. Effect of selective release of membrane-bound alkaline phosphatase and treatment with isoosmotic pH 6 buffer. J Biol Chem 261:9354-9360

    PubMed  CAS  Google Scholar 

  • Reinholt FP, Wernerson A (1988) Septal distribution and the relationship of matrix vesicle size to cartilage mineralization. Bone Miner 4:63-71

    PubMed  CAS  Google Scholar 

  • Reinholt FP, Hultenby K, Oldberg A, Hienegard D (1990) Osteopontin - a possible anchor of osteoclasts to bone. Proc Natl Acad Sci USA 87:4473-4475

    PubMed  CAS  Google Scholar 

  • Robey PG, Young MF, Flanders KC, Roche NS, Kondaiah P, Reddi AH, Termine JD, Sporn MB, Roberts AB (1987) Osteoblasts synthesize and respond to transforming growth factor type-β (TGF-β) in vitro. J Cell Biol 105:457-463

    PubMed  CAS  Google Scholar 

  • Robey P, Young M, Fisher L, McClain T (1989) Thrombospondin is an osteoblast- derived component of mineralized extracellular matrix. J Cell Biol 108:719-727

    PubMed  CAS  Google Scholar 

  • Robinson RA, Watson ML (1952) Collagen-crystal relationships in bone as seen in the electron microscope. Anat Rec 114:383

    PubMed  CAS  Google Scholar 

  • Robison R (1923) The possible significance of hexose phosphoric esters in ossification. Biochem J 17:286-293

    PubMed  CAS  Google Scholar 

  • Rojas E, Pollard HB, Haigier HT, Parra C, Burns Al (1990) Calcium-activated endonexin II forms calcium channels across acidic phospholipid bilayer membranes. J Biol Chem 265:21207-21215

    PubMed  CAS  Google Scholar 

  • Romberg RW, Werness PG, Riggs BL, Mann KB (1986) Inhibition of hydroxyapatite crystal growth by bone-specific and other calcium-binding proteins. Biochemistry 25:1176-1180

    PubMed  CAS  Google Scholar 

  • Rozier RN, O’Keefe RJ, Crabb ID, Puzas JE (1989) Transforming growth factor beta; an autocrine regulator of chondrocytes. Connect Tissue Res 20:295-301

    Google Scholar 

  • Russell RGG, Kislig AM, Casey PA, Fleisch H, Thornton J, Schenk R, Williams DA (1973) Effect of diphosphonates and calcitonin on the chemistry and quantitative histology of rat bone. Calcif Tissue Res 11:179-195

    PubMed  CAS  Google Scholar 

  • Sajdera SW, Hascall VC (1969) Protein polysaccharide complex from bovine nasal cartilage. A comparison of low and high shear extraction procedures. J Biol Chem 244:77-87

    PubMed  CAS  Google Scholar 

  • Sauer GR, Wuthier RE (1988) Fourier transform infrared characterization of mineral phases formed during induction of mineralization by collagenase- released matrix vesicles in vitro. J Biol Chem 263:13718-13724

    PubMed  CAS  Google Scholar 

  • Schenk RK, Miller J, Zinkernagel R, Willenegger H (1970). Ultrastructure of normal and abnormal bone repair. Calcif Tissue Res 4 [Suppl]: 110-111

    Google Scholar 

  • Schenk R, Merz WA, Muhlbauer R, Russell RGG, Fleisch H (1973) Effect of ethane-1-hydroxy-1, 1-diphosphonate (EHDP) and dichloromethylene dipho- sphonate (C12-MDP) on the calcification and resorption of cartilage and bone in the tibial epiphysis and metaphysis of rats. Calcif Tissue Res 11:196–214

    PubMed  CAS  Google Scholar 

  • Schmid TM, Linsenmayer TF (1985) Immunolocalization of short chain cartilage collagen (Type X) in avian tissues. J Cell Biol 100:598-605

    PubMed  CAS  Google Scholar 

  • Seyedin SM, Thompson Ay, Bentz H, Rosen DM, McPherson JM, Conti A, Siegel NR, Gallupi GR, Piez KA (1986) Cartilage-inducing factor-A apparent identity to transforming growth factor-β. J Biol Chem 261:5693-5695

    PubMed  CAS  Google Scholar 

  • Shimizu K, Hanamoto T, Hamakubu T, Lee WJ, Suzuki K, Nakagawa Y, Murachi T, Yamamuro T (1991) Immunohistochemical and biochemical demonstration of calcium-dependent cysteine proteinase (CALPAIN) in calcifying cartilage of rats. J Orthop Res 9:26-36

    PubMed  CAS  Google Scholar 

  • Siegel SA, Hummel CF, Carty RP (1983) The role of nucleoside triphosphate phyrophosphohydrolase in in vitro nucleoside triphosphate-dependent matrix vesicle calcification. J Biol Chem 25814:8601-8607

    Google Scholar 

  • Simon DR, Berman I, Howell DS (1973) Relationship of extracellular matrix vesicles to calcification in normal and healing rachitic epiphyseal cartilage. Anat Rec 176:167-180

    PubMed  CAS  Google Scholar 

  • Sisca RF, Provenza DV (1972) Initial dentin formation in human decidious teeth. An electron microscopic study. Calcif Tissue Res 9:1-16

    PubMed  CAS  Google Scholar 

  • Slavkin HC, Bringas P Jr, Croissant R, Bavetta LA (1972) Epithelial-mesenchymal interactions during odontogenesis: II. Intercellular matrix vesicles. Mech Ageing Dev 1:139-161

    Google Scholar 

  • Smith R, Triffit JT (1986) Bones in muscles: the problems of soft tissue ossification. Q J Med (New Series) 61:985-990

    CAS  Google Scholar 

  • Sobel AE, Laurence PA, Burger M (1960) Nuclei formation and cyrstal growth in mineralizing tissues. Trans NY Acad Sci 22:233-241

    CAS  Google Scholar 

  • Solursh M, Jensen KL, Reiter RS, Schmid TM, Linsenmayer TF (1986) Environmental regulation of type X collagen production by cultured limb mesenchyme, mesectoderm and sternal chondrocytes. Dev Biol 117:90-101

    PubMed  CAS  Google Scholar 

  • Stechschulte DJ Jr, Morris DC, Silverton SF, Anderson HC, Vaananen HK (1992) Presence and specific concentration of carbonic anhydrase in rat matrix vesicles. Bone and Mineral 17:187-192

    PubMed  CAS  Google Scholar 

  • Stechschulte DJ Jr, Morris DC, Croughan WS, Davis L, Anderson HC (1991b) Isolation and in vitro calcification of matrix vesicles derived from fetal rat calvariae. J Bone Miner Res 6 [Suppl 1]:S98

    Google Scholar 

  • Stein RM, Hsu HHT, Anderson HC (1981) Protein profiles of isolated fetal calf and rachitic rat matrix vesicles by polyacrylamide gel electrophoresis. In: Ascenzi A, Bonucci E, de Bernard B (eds) Proceedings of the 3rd international conference on matrix vesicles. Wichtig, Milano, pp 117-122

    Google Scholar 

  • Takano Y, Ozawa H, Crenshaw MA (1986) Ca-ATPase and ALPase activities at the initial calcification sites of dentin and enamel in rat incision. Calcif Tissue Res 243:91-99

    CAS  Google Scholar 

  • Takaoka K, Yoshikawa H, Shimizu M, Ono K, Amitani K, Nakata Y (1982) Partial purification of bone-inducing substances from a murine osteosarcoma. Clin Orthop 164:265-270

    PubMed  CAS  Google Scholar 

  • Takaoka K, Yoshikawa H, Masuhara K, Sugamoto K, Tsuda T, Aoki Y, Ono K, Sakamoto Y (1989) Establishment of a cell line producing human bone morphogenetic protein from a human osteosarcoma. Clin Orthop 244:258-264

    PubMed  Google Scholar 

  • Tanimura A, McGregor DH, Anderson HC (1983) Matrix vesicles in atherosclerotic calcification. Proc Soc Exp Biol Med 172:173-177

    PubMed  CAS  Google Scholar 

  • Termine JD, Conn KM (1976) Inhibition of apatite formation by phosphorylated metabolites and macromolecules. Calcif Tissue Res 22:149-157

    PubMed  CAS  Google Scholar 

  • Termine JD, Kleinman HK, Whitson WS, Conn KM, McGarvey ML, Martin GR (1981) Osteonectin, a bone specific protein linking mineral to collagen. Cell 26:99-105

    PubMed  CAS  Google Scholar 

  • Triffit JT (1987) The special proteins of bone tissue. Clin Sci 72:399-408

    Google Scholar 

  • Triffit JT (1989) Initiation and enhancement of bone formation. A Review. Acta Orthop Scand 58:673-684

    Google Scholar 

  • Tsonis P (1991) 1,25-Dihydroxyvitamin D3 stimulates chondrogenesis of the chick limb bud mesenchymal cells. Dev Biol 143:130-134

    PubMed  CAS  Google Scholar 

  • Urist MR, Strates BS (1970) Bone morphogenetic protein. J Dent Res 50:1392-1406

    Google Scholar 

  • Vaananen HK (1984) Immunohistochemical localization of carbonic anhydrase isoenzymes I and II in human bone, cartilage and giant cell tumor. Histochemistry 81:485-487

    PubMed  CAS  Google Scholar 

  • Vaananen HK, Hentunen T, Lakkakorpi P, Parvinen EK, Sundquist K, Tuukkanen J (1988) Mechanism of osteoclast mediated bone resorption. Ann Chir Gynaecol 77:193-196

    PubMed  CAS  Google Scholar 

  • Vaananen HK, Karhukorpi EK, Sundquist K, Wallmark B, Roininen I, Hentunen T, Tuurkanen J, Lakkakorpi P (1990) Evidence for the presence of a proton pump of the vacuolar H+ATPase type in ruffled borders of osteoclasts. J Cell Biol 111:1305-1311

    PubMed  CAS  Google Scholar 

  • Van Wyk JJ (1988) The different roles of IGF-1 and IGF-2 in growth and differentiation. In: Imura K (ed) Progress in endocrinology 1988. Elsevier, Amsterdam, pp 947-955

    Google Scholar 

  • Van Wyk JJ, Underwood LE, Hintz RE, Clemmons DR, Voima J, Weaver RP (1974) The somatomedins: a family of insulin-like growth factors under growth hormone control. Recent Prog Horm Res 30:259-318

    PubMed  Google Scholar 

  • Varner HH, Horn VJ, Martin GR, Hewitt AT (1986) Chondronectin interactions with proteoglycan. Arch Biochem Biophys 244:824-830

    PubMed  CAS  Google Scholar 

  • Veis A, Perry A (1967) The phosphoprotein of dentin matrix. Biochemistry 6:2409–2416

    PubMed  CAS  Google Scholar 

  • Wu LNY, Sauer GR, Genge BR, Wuthier RE (1989) Induction of mineral deposition by primary cultures of chicken growth plate chondrocytes in ascorbate containing media - evidence of an association between matrix vesicles and collagen. J Biol Chem 264:21346-21355

    PubMed  CAS  Google Scholar 

  • Wu LNY, Genge BR, Lloyd GC, Wuthier RE (1991a) Collagen binding proteins in collagenase-released matrix vesicles from cartilage. J Biol Chem 266:1195-1203

    PubMed  CAS  Google Scholar 

  • Wu LNY, Genge BR, Wuthier RE (1991b) Association between proteoglycans and matrix vesicles in the extracellular matrix of growth plate cartilage. J Biol Chem 266:1187-1194

    PubMed  CAS  Google Scholar 

  • Wuthier RE (1968) Lipids of mineralizing epiphyseal tissues in the bovine fetus. J Lipid Res 9:68-78

    PubMed  CAS  Google Scholar 

  • Wuthier RE (1975) Lipid composition of isolated cartilage cells, membranes and matrix vesicles. Biochim Biophys Acta 409:128-143

    PubMed  CAS  Google Scholar 

  • Wuthier RE (1977) Electrolytes of isolated epiphyseal chondrocytes matrix vesicles and extracellular fluid. Calcif Tissue Res 23:125-133

    PubMed  CAS  Google Scholar 

  • Wuthier RE, Gore ST (1977) Partition of inorganic ions and phospholipids in isolated cell membrane and matrix vesicle fractions: evidence for Ca-Pi-acidic phospholipid complexes. Calcif Tissue Res 24:163-171

    PubMed  CAS  Google Scholar 

  • Wuthier RE, Linder RE, Warner GP, Gore ST, Borg TK (1978) Non-enzymatic isolation of matrix vesicles: characterization and initial studies on 45Ca and 32P-orthophosphate metabolism. Metab Bone Dis Rel Res 1:125-136

    CAS  Google Scholar 

  • Wuthier RE, Chin JE, Hale JR, Register TC, Hale LV, Ishikawa Y (1985) Isolation and characterization of calcium-accumulating matrix vesicles from chondrocytes of chick epiphyseal growth plate cartilage in primary culture. J Biol Chem 260:15972-15979

    PubMed  CAS  Google Scholar 

  • Yaari A, Shapiro IM (1982) Effect of phosphate on phosphatidyl serine-mediated calcium transport. Calcif Tissue Int 34:43-48

    PubMed  CAS  Google Scholar 

  • Yendt ER, Howard JE (1955) Studies on the mode of action of citrate therapy in rickets. Bull Johns Hopkins Hosp 96:101-115

    PubMed  CAS  Google Scholar 

  • Yoshikawa H, Masuhara K, Takaoka K, Ono K, Tanaka H, Seino Y (1985) Abnormal bone formation induced by osteosarcoma-derived bone-inducing substance in the x-linked hypophosphatémie mouse. Bone 6:235-239

    PubMed  CAS  Google Scholar 

  • Young MF, Kerr JM, Termine JD, Wewer UM, Wang MG, McBride OW, Fisher LW (1990) cDNA cloning, mRNA distribution and heterogeneity, chromosomal location and RFLP analysis of human osteopontin. Genomics 7:491-502

    PubMed  CAS  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Anderson, H.C., Morris, D.C. (1993). Mineralization. In: Physiology and Pharmacology of Bone. Handbook of Experimental Pharmacology, vol 107. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77991-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77991-6_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77993-0

  • Online ISBN: 978-3-642-77991-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics