Skip to main content

Pankreasenzymsubstitution — ein galenisches Problem

  • Conference paper
Ökosystem Darm IV
  • 33 Accesses

Zusammenfassung

Für eine ungestört ablaufende Verdauung und Resorption der Fette im Gastrointestinaltrakt sind die gastrale Lipase und die Pankreasenzyme essentiell. Die Triglyzeride werden im Magen zunächst durch die gastrale Lipase anverdaut und nach der Entleerung des Chymus in das Duodenum durch die Pankreaslipase in resorbierbare Monoglyzeride und Fettsäuren gespalten [6, 47]. Aus der komplexen Physiologie der Fettverdauung lassen sich für die in der Enzymsubstitutionstherapie bei Maldigestionssyndromen eingesetzten Lipasen mehrere Anforderungen an die galenische Verarbeitung der Medikamente stellen. Bei nicht säurestabilen Präparaten ist ein säureresistenter Überzug, der eine intakte Passage der Enzyme durch das saure Milieu des Magens gewährleistet, ein wichtiger Aspekt. Bei Multiunit-dose-Präparaten sind Durchmesser und Dichte der Mikrotabletten und Pellets, die Einfluß auf deren gastrale Entleerung nehmen, wichtige Parameter für die Entwicklung von Darreichungsformen, die gewährleisten sollen, daß das Medikament möglichst parallel mit dem Chymus wandert. Dies wird im folgenden dargestellt.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Abrams CK (1982) Fat digestion in cystic fibrosis - compensatory role of lingual lipase. Clin Res 30:279 A

    Google Scholar 

  2. Bernbäck B, Bläckberg L (1989) Human gastric lipase. The N-terminal tetrapeptid is essential for lipid binding and lipase activity. Eur J Biochem 182: 495–499

    Google Scholar 

  3. Bernbäck S, Bläckberg L, Hernell O (1989) Fatty acids generated by gastric lipase promote human milk triacylglycerol digestion by pancreatic colipase-dependent lipase. Biochim Biophys Acta 1001: 286–293

    PubMed  Google Scholar 

  4. Bernbäck S, Bläckberg L, Hernell O (1990) The complete digestion of human milk triacylglycerol in vitro requires gastric lipase, pancreatic colipase-dependent lipase, and bile salt-stimulated lipase. J Clin Invest 85: 1221–1226

    Article  PubMed  Google Scholar 

  5. Bodmer MW, Angal S, Yarranton GT, Harris TJR, Lyons A, King DJ, Pieroni G, Rivière C, Verger R, Lowe PA (1987) Molecular cloning of a human gastric lipase and expression of the enzyme in yeast. Biochim Biophys Acta 909: 237–244

    PubMed  CAS  Google Scholar 

  6. Borgström B, Dahlquist A, Lundh G, Sjövall J (1957) Studies on intestinal digestion and absorption in the human. J Clin Invest 36: 1521–1536

    Article  PubMed  Google Scholar 

  7. Borgströn B, Erlanson-Albertsson C, Wieloch T (1979) Evidence for a pancreatic pro-colipase and its activation by trypsin. FEBS Lett 108: 104–114

    Google Scholar 

  8. Borgström B (1991) The lipolytic enzymes of the gastrointestinal tract and fat digestion. In: Lankisch PG (ed) Pancreatic enzymes in health and disease. Springer, Berlin Heidelberg New York Tokyo, pp 19–26

    Google Scholar 

  9. Bosc-Bierne I, Fournière L, Rathelot J, Hirn M, Sarda L (1987) Production and characterization of four monoclonal antibodies against porcine pancreatic colipase. Biochim Biophys Acta 91: 326–333

    Article  Google Scholar 

  10. Cohen M, Morgan RGH, Hofmann AF (1971) Lipolytic activity of human gastric and duodenal juice against medium and long chain triglycerides. Gastroenterology 60: 1–25

    PubMed  CAS  Google Scholar 

  11. Coupe AJ, Davis SS, Wilding IR (1991) Variation in gastrointestinal transit of pharmaceutical dosage forms in healthy subjects. Pharm Res 8: 360–364

    Article  PubMed  CAS  Google Scholar 

  12. Coupe AJ, Davis SS, Evans DF, Wilding IR (1991) Correlation of the gastric emptying of nondisintegrating tablets with gastrointestinal motility. Pharm Res 8: 1281–1285

    Article  PubMed  CAS  Google Scholar 

  13. Davis SS, Stockwell AF, Taylor MJ, Hardy JG, Whalley DR, Wilson CG, Bechgaard H, Christensen FN (1986) The effect of density on the gastric emptying of single-and multiple-unit dosage forms. Pharm Res 3: 208–213

    Article  Google Scholar 

  14. DiMagno EP, Go VLW, Summerskill WHJ (1973) Relation between pancreatic enzyme output and malabsorption in severe pancreatic insufficiency. New Engl J Med 288: 813–815

    Article  PubMed  CAS  Google Scholar 

  15. Dutta SK, Anand K, Gadacz TR (1986) Bile salt malabsorption in pancreatic insufficiency secondary to alcoholic pancreatitis. Gastroenterology 91: 1243–1249

    PubMed  CAS  Google Scholar 

  16. Düdder M, Spener F (1988) Vergleich der Lipaseaktivität in Pankreatin-Fertigarzneien. Pharmazie 42: 56–66

    Google Scholar 

  17. Erlanson C, Akerlund HE (1984) Conformational change in pancreatic lipase induced by colipase. FEBS Lett 155: 32–38

    Google Scholar 

  18. Fogel MR, Gray GM (1973) Starch hydrolysis in man: an intraluminal process not requiring membrane digestion. J Appl Physiol 35: 263–267

    PubMed  CAS  Google Scholar 

  19. Gargouri Y, Pieroni G, Lowe PA, Sarda L, Verger R (1986) Human gastric lipase. The effect of amphiphiles. Eur J Biochem 156: 305–310

    Google Scholar 

  20. Gargouri Y, Moreau H, Verger R (1989) Gastric lipases: biochemical and physiological studies. Biochim Biophys Acta 1006: 255–271

    PubMed  CAS  Google Scholar 

  21. Hamosh M (1984) Lingual lipase. In: Borgström B, Brockman HL (eds) Lipases. Elsevier, Amsterdam, pp 49–81

    Google Scholar 

  22. Jensen RG, De Jong FA, Clark RM, Palmgren LG, Liao TH, Hamosh M (1982) Stereospecificity of premature human infant lingual lipase. Lipids 17: 570–572

    Article  PubMed  CAS  Google Scholar 

  23. Kozumplik V, Staffa F, Hoffmann GE (1988) Purification of pancreatic phospholipase A2 from human duodenal juice. Biochim Biophys Acta 1002: 395–397

    Google Scholar 

  24. Kühnelt P, Mundlos S, Adler G (1991) Enfluß der Pelletgröße eines Pankreasenzympräparates auf die duodenale lipolytische Aktivität. Z Gastroenterol 29: 417–421

    PubMed  Google Scholar 

  25. Layer P, Go VLW, DiMagno EP (1986) Fate of pankreatic enzymes during small intestinal aboral transit in humans. Am J Physiol 251:G 475-G 480

    Google Scholar 

  26. Layer P, Singer MW, Eysselein VE (1987) Einfluß des circadianen Rhythmus auf die Motilität. Z Gastroenterol 25: 69–73

    PubMed  Google Scholar 

  27. Layer P, Jansen JBMJ, Cherian L, Lamers CBHW, Goebell H (1990) Feedback regulation of human pancreatic secretion. Effects of protease inhibition on duodenal delivery and small intestinal transit of pancreatic enzymes. Gastroenterology 98: 1311–1319

    Google Scholar 

  28. Littlewood JM (1991) Pancreatic enzymes in cystic fibrosis. In: Lankisch PG (ed) Pancreatic enzymes in health and disease. Springer, Berlin Heidelberg New York Tokyo, pp 177–189

    Google Scholar 

  29. Meyer JH, Dressman J, Fink AS, Amidon G (1985) Effect of size and density on canine gastric emptying of non-digestible solids. Gastroenterology 89: 805–813

    PubMed  CAS  Google Scholar 

  30. Meyer JH, Mayer EA, Jehn D, Gu YG, Fried M, Fink A (1986) Gastric processing and emptying of fat. Gastroenterology 90: 1176–1187

    PubMed  CAS  Google Scholar 

  31. Meyer JH, Porter-Fink V, Elashoff J, Dressman J, Amidon GL (1988) Human postcibal gastric emptying of 1–3 mm spheres. Gastroenterology 94: 1315–1325

    PubMed  CAS  Google Scholar 

  32. Meyer B, Beglinger C, Neumayer M, Stalder GA (1989) Physical characteristics of indigestible solids affect emptying from the fasting human stomach. Gut 30: 1526–1529

    Article  PubMed  CAS  Google Scholar 

  33. Meyer HJ (1991) Delivery of pancreatin in microsphere preparations: transit, physiological needs. In: Lankisch PG (ed) Pancreatic enzymes in health and disease. Springer, Berlin Heidelberg New York Tokyo, pp 71–88

    Google Scholar 

  34. Mojaverian P, Reynolds JC, Ouyang A, Wirth F, Kellner PE, Vlasses PH (1991) Mechanism of gastric emptying of a nondisintegrating radiotelemetry capsule in man. Pharm Res 8: 97–100

    Article  PubMed  CAS  Google Scholar 

  35. Moreau H, Gargouri Y, Pieroni G, Verger R (1988) Importance of sulfhydryl group for rabbit gastric lipase activity. FEBS Lett 236: 383–387

    Article  PubMed  CAS  Google Scholar 

  36. Mori M, Shirai Y, Uezono Y, Takahashi T, Nakamura Y, Makkita H, Nakanishi Y, Imasato Y (1989) Influence of specific gravity and food on movement of granules in the gastrointestinal tract of rats. Chem Pharm Bull 37: 738–741

    PubMed  CAS  Google Scholar 

  37. Mundlos S, Kühnelt P, Adler G (1990) Monitoring enzyme replacement treatment in exocrine pancreatic insufficiency using the cholesteryl octanoate breath test. Gut 31: 1324–1328

    Article  PubMed  CAS  Google Scholar 

  38. Mundlos S, Kühnelt P, Adler G (1991) Monitoring of enzyme substitution using the cholesteryl octanoate breath test. In: Lankisch PG (ed) Pancreatic enzymes in health and disease. Springer, Berlin Heidelberg New York Tokyo, pp 123–130

    Google Scholar 

  39. Otte M, Ridder P, Dageförde J (1987) In-vitro-Untersuchungen zur Pankreasenzymsubstitution. Dtsch Med Wochenschr 112: 1498–1502

    Article  PubMed  CAS  Google Scholar 

  40. Peschke GJ (1991) Active components and galenic aspects of enzyme preparations. In: Lankisch PG (ed) Pancreatic enzymes in health and disease. Springer, Berlin Heidelberg New York Tokyo, pp 55–64

    Google Scholar 

  41. Regan PT, Malagelada JR, DiMagno EP, Go VLW (1979) Reduced intraluminal bile acid concentrations and fat maldigestion in pancreatic insufficiency: correction by treatment. Gastroenterology 77: 285–289

    PubMed  CAS  Google Scholar 

  42. Rudd EA,Brockman HL (1984) Pancreatic carboxyl ester lipase. In: Borgström B, Brockman HL (eds) Lipases. Elsevier, Amsterdam, pp 185–204

    Google Scholar 

  43. Schneider MU, Knoll-Ruzicka ML, Domschke S, Heptner G, Domschke W (1985) Pancreatic enzyme replacement therapy: comparative effect of conventional and enteric-coated microspheric pancreatin and acid-stable fungal enzyme preparations on steatorrhea in chronic pancreatitis. Hepatogastroenterology 32: 97–102

    PubMed  CAS  Google Scholar 

  44. Sémériva M, Desnuelle P (1979) Pancreatic lipase and colipase. An example of heterogeneous biocatalysis. Adv Enzymol 48: 319–370

    Google Scholar 

  45. Sirois PJ. Amidon GL, Meyer JH, Doty JE, Dressman JB (1990) Size and density discrimination of nondigestible solids during gastric emptying in dogs: a hydrodynamic correlation. Am J Physiol 258:G 65-G 72

    Google Scholar 

  46. Spener F, Düdder M (1991) Bioverfügbarkeit der Lipase Pankreatin-Fertigarz- neien. Therapiewoche 37: 2360–2364

    Google Scholar 

  47. Spener F, Paltauf F, Holasek A (1968) The intestinal absorption of glycerol trioctadecenyl ether. Biochim Biophys Acta 152: 368–371

    PubMed  CAS  Google Scholar 

  48. Stock KP, Habrunner M, Rösch W (1983) Pankreasenzyme. Vergleich der digestiven Potenz verschiedener Präparate in vitro. Krankenhauspharmazie 8: 235–238

    Google Scholar 

  49. Takahashi T, Shirai Y, Nakamura Y, Uezono Y, Makita H, Nakanishi Y, Imasato Y (1985) Movement of granules and tablets in the gastrointestinal tract of gastricemptying-controlled rabbits. Chem Pharm Bull 33: 5495–5502

    PubMed  CAS  Google Scholar 

  50. Thews G, Mutschler E, Vauper P (1989) Anatomie, Physiologie und Pathologie des Menschen, 3. Aufl. Wissenschaftliche Verlags GmbH, Stuttgart, S 287–321

    Google Scholar 

  51. Tiruppathi C, Balasubramanian KA (1982) Purification and properties of an acid lipase from human gastric juice. Biochim Biophys Acta 712: 692–697

    PubMed  CAS  Google Scholar 

  52. Unterberg C, Spener F (1986) pH-Abhängigkeit der Aktivität von Substitutionsenzymen für humane Pankreaslipase — Eine in vitro Studie. Fette, Seifen, Anstrichmittel 88: 561–564

    Google Scholar 

  53. Volhardt F (1901) Über das fettspaltende Ferment des Magens. Z Klin Med 42: 414–429

    Google Scholar 

  54. Walter-Sack I (1991) Nahrungsaufnahme und Resorption von Arzneimitteln aus dem Magen-Darm-Trakt. Z Ges Inn Med 46: 95–100

    PubMed  CAS  Google Scholar 

  55. Weiner K, Graham LS, Reedy T, Elashoff J, Meyer JH (1981) Simultaneous gastric emptying of two solid foods. Gastroenterology 81: 257–266

    PubMed  CAS  Google Scholar 

  56. Winkler FK, D’Arcy A, Hunzinger W (1990) Structure of human pancreatic lipase. Nature 343: 771–774

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Spener, F., Eggenstein, C. (1993). Pankreasenzymsubstitution — ein galenisches Problem. In: Bockemühl, J., Ottenjann, R., Zeitz, M., Lux, G. (eds) Ökosystem Darm IV. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77930-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77930-5_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56198-9

  • Online ISBN: 978-3-642-77930-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics