Skip to main content

Perception and Detection of Signals in Medical Images

  • Conference paper
  • 113 Accesses

Part of the book series: NATO ASI Series ((NATO ASI F,volume 98))

Abstract

We are interested in how well the human visual system performs signal detection, discrimination, identification and recognition tasks given noise-limited medical images. This paper will discuss the use of statistical decision theory concepts to understand both fundamental and human limits of decision accuracy. In particular, the IDEAL OBSERVER concept will be emphasized.

The five major sections of the paper include an introduction to visual system design and operation; theoretical aspects of signal detection; methods of measuring observer performance; a review of the medical imaging literature on observer performance; and some example applications to system design problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alter, A.J., Kargas, G.A., Kargas, S.A., Cameron, J.R., and McDermott, J.C. (1982). The influence of ambient and viewbox light upon visual detection of low-contrast targets in a radiograph, Invest. Radiol. 17, pp. 402–406.

    Article  PubMed  CAS  Google Scholar 

  • Barlow, H.B. (1978). The efficiency of detecting changes in density in random dot patterns, Vision Research 18, pp. 637–650.

    Article  PubMed  CAS  Google Scholar 

  • Barlow, H.B. (1983). Understanding natural vision. In: Physical and biological processing of images, Braddock, O.J. and Sleigh, A.C. (eds.), Springer-Verlag, New York, pp. 2–14, and J.G. Robson, Frequencty domain visual processing, pp. 73-87).

    Chapter  Google Scholar 

  • Barrett, H.H., Myers, K.J. and Wagner, R.F. (1986). Beyond signal detection theory, S.P.I.E. 626, pp. 231–239.

    Google Scholar 

  • Baxter, B., Ravindra, H., and Norman, R.A. (1982). Changes in lesion detectability caused by light adaptation in retinal photoreceptors, Invest. Rad. 17, pp.394–401.

    Article  CAS  Google Scholar 

  • Berbaum, K.S., Franken, E.A., Dorfman, D.D., and Barloon, T.J. (1988). Influence of clinical history upon detection of nodules and other lesions, Invest. Rad. 23, pp. 48–61.

    Article  CAS  Google Scholar 

  • Berbaum, K., Franken, E.A., and Smith, W.L. (1985). The effect of comparison films upon resident interpretation of pediatric chest radiographs, Invest. Radiol. 20, pp. 124–128.

    Article  PubMed  CAS  Google Scholar 

  • Biberman, L.M. (1973). Perception of displayed information, Plenum Press, NY, p. 73.

    Google Scholar 

  • Bollen, R. (1986). Correlation between measured noise and its visual perception, S.P.I.E. 626, pp. 251–258.

    Google Scholar 

  • Braddock, O.J. and Sleigh, A.C. (1983). Physical and biological processing of images, Springer-Verlag, New York.

    Book  Google Scholar 

  • Bunch, P.C., Hamilton, J.F., Sanderson, G.K., and Simmons, A.H. (1977). A free response approach to the measurement and characterization of radiographic observer performance, S.P.I.E. Proceedings 127, pp. 124–135.

    Google Scholar 

  • Burgess, A.E. (1985). Detection and identification efficiency: an update, S.P.I.E. 535, pp. 50–56.

    Google Scholar 

  • Burgess, A.E. (1985). Effect of quantization noise on visual signal detection in noisy images, JOSA A2, pp. 1424–1428.

    Google Scholar 

  • Burgess, A.E. (1985). Visual signal detection. III. On bayesian use of prior knowledge and cross correlation, J. Opt. Soc. Am. A2, pp. 1498–1507.

    Article  Google Scholar 

  • Burgess, A. (1986). On observer internal noise, S.P.I.E. 626, pp. 208–213.

    Google Scholar 

  • Burgess, A.E. (submitted). Sampling error in MAFC experiments. Submitted for publication in Perception and Psychophysics.

    Google Scholar 

  • Burgess, A.E. and Barlow, H.B. (1983). The efficiency of numerosity discrimination in random dot images, Vision Research 23, 811–829.

    Article  PubMed  CAS  Google Scholar 

  • Burgess, A.E. and Colborne, B. (1988). Visual signal detection IV. Observer inconsistency, J. Opt. Soc. Am. A5, pp. 617–627.

    Article  Google Scholar 

  • Burgess, A.E. and Ghandeharian, H. (1984). Visual signal detection. I. Ability to use phase information, J. Opt. Soc. Am. A1, pp. 900–905.

    Article  Google Scholar 

  • Burgess, A.E. and Ghandeharian, H. (1984). Visual signal detection. II. Signal-location identification, J. Opt. Soc. Am. A1, pp. 906–910.

    Article  Google Scholar 

  • Burgess, A.E. and Humphrey, K. (1977). Visual perception limits in angiography, S.P.I.E. Proc. 127, pp. 51–59.

    Google Scholar 

  • Burgess, A.E., Humphrey, K., Wagner, R.F. (1979). Detection of bars and discs in quantum noise, S.P.I.E. Proc. 173, pp. 34–40.

    Google Scholar 

  • Burgess, A.E., Jennings, R.J., and Wagner, R.F. (1982). Statistical Efficiency — a measure of human visual signal detection performance, Journal of Applied Photographic Engineering 8, pp. 766–78.

    Google Scholar 

  • Burgess, A.E., Wagner, R.F., and Jennings, R.J. (1982). Human signal detection performance for noisy medical images, Proc. International Workshop on Physics and Engineering in Medical Images. IEEE Computer Soc. Cat. N0.82CH1751-7.

    Google Scholar 

  • Burgess, A.E., Wagner, R.F., Jennings, R.J., and Barlow, H.B. (1981). Efficiency of human visual signal discrimination, Science 214, pp. 93–94.

    Article  PubMed  CAS  Google Scholar 

  • Caelli, T., and Nawrot, M. (1987). Localization of signals in images, J. Opt. Soc. Am. A4, pp. 2274–2280.

    Article  Google Scholar 

  • Carterette, C.E., Fiske, R.A., and Huang, H.K. (1986). ROC evaluation of a digital viewing station for radiologists, S.P.I.E. 626, p. 441–446.

    Google Scholar 

  • Castleman, K.R. (1979). Digital image processing, Prentice-Hall, Englewood Cliffs, N.J., p.14.

    Google Scholar 

  • Chan, H.P., Metz, C.E., and Doi, K. (1985). Digital imaging processing — optimal spatial filter for maximization of the perceived snr based on a statistical decision theory model for the human observer, S.P.I.E., 535, pp. 1–11.

    Google Scholar 

  • Chan, H.P., Vyborny, C.J., MacMahon, H., Metz, C.E., Doi, K., and Sickles, E.A. (1987). Digital mammography: ROC studies of pixel size and unsharp mask filtering on the detection of subtle microcalcifications, Invest. Rad. 22, pp. 581–589.

    Article  CAS  Google Scholar 

  • Chester, M.S. and Hay, G.A. (1983). Quantitative relation between detectability and noise power, Phys. Med. Biol. 28, pp. 1113–1125.

    Article  Google Scholar 

  • Chester, M.S. and Hay, G.A. (1984). Concerning the quantitative relation between detectability and noise power, Phys. Med. Biol. 29, pp. 602–604.

    Article  Google Scholar 

  • Chew, E., Weiss, G.H., Brooks, R.A., and Di Chiro, G. (1978). Effect of CT noise on detectability of test objects, A.J.R. 131, pp. 681–685.

    CAS  Google Scholar 

  • Cohen, G., McDaniel, D.L., and Wagner, L.K. (1984). Analysis of variations in contrast-detail experiments, Med. Phys. 11, pp. 469–473.

    Article  PubMed  CAS  Google Scholar 

  • Coltman, J.W., and Anderson, A.E. (1960). Noise limitations of resolving power in electronic imaging, Proc. IRE 48, pp. 858–865.

    Article  Google Scholar 

  • Creelman, C.D. (1961). Detection of complex signals as a function of signal bandwidth and duration. J. Acoust. Soc. Am. 33, pp.89–94.

    Article  Google Scholar 

  • D.J. Goodenough, D.J. (1981). Psychophysical perception in CT images. In: Technical aspects of computed tomography. Newton and Potts (eds.), C.V. Mosby Company, St. Louis and also Ph.D. Thesis, Univ. of Chicago (1972).

    Google Scholar 

  • Dooley, R.P. (1977) Advances in the psychophysical and visual aspects of image evaluation. Proc. SPSE Technical Section Conference.

    Google Scholar 

  • Edhome, P. (1981). Boundaries in the radiographic image, Acta Radiologica 22, pp. 457–473.

    Google Scholar 

  • Fiete, R.D., Barrett, H.H., Smith, W.E., and Myers, K.J. (1987). Hotelling trace criterion and its correlation with human-observer performance, J. Opt. Soc. Am. A4, pp. 945–953.

    Article  Google Scholar 

  • Fiske, R.A., Valentino, D.J., Huang, H.K., and Blume, H. (1987). The effect of digital image display format on perceived image quality, S.P.I.E. 767, pp. 631–638.

    Google Scholar 

  • Gabor, D. (1946). Theory of communication, J. IEE (London), 93(III), pp. 429–457.

    Google Scholar 

  • Gebauer, A., Lissner, J., and Schott, O. (1967). Roentgen television, Grune & Stratton, New York.

    Google Scholar 

  • Giger, M.L. and Doi, K. (1985). Investigation of basic imaging properties of digital radiography. 3. Effect of pixel size on SNR and threshold contrast, Med. Phys. 12, pp. 201–208.

    Article  PubMed  CAS  Google Scholar 

  • Giger, M.L. and Doi, K. (1987). Effect of pixel size on detectability of low-contrast signals in digital radiography, J. Opt. Soc. Am. A4, pp. 966–975.

    Article  Google Scholar 

  • Gigar, M.L., Ohara, K., and Doi, K. (1985). Investigation of basic imaging properties of digital radiography. 9. Effect of displayed gray levels on signal detection, Med. Phys. 13, pp. 312–318.

    Article  Google Scholar 

  • Goodall, W.M. (1951). Television by pulse code modulation, Bell Syst. Tech. J..

    Google Scholar 

  • Gould, R.G., Balongier, B., Goldberg, H.I., and Moss, A. (1980). Objective performance measurement versus perceived image quality in intensifier fluoroscopic or photospot images, Radiology 137, pp. 783–788.

    PubMed  CAS  Google Scholar 

  • Green, D.M., and Swets, J.A. (1966). Signal detection theory and psychophysics, Wiley, New York.

    Google Scholar 

  • Gregory, R.L. (1970). The intelligent eye, Weidenfeld and Nicholson, London.

    Google Scholar 

  • Guignard, P.A., and Salehi, N. (1983). Validity of the gaussian assumption in the analysis of ROC data obtained from scintigraphic-like images, Phys. Med. Biol. 28, pp. 1409–1417.

    Article  PubMed  CAS  Google Scholar 

  • Ham, W.T. Jr., Mueller, H.A., Ruffolo, J.J., Guerry, D. III, and Guerry, R.K. (1982). Action spectrum for retinal injury from near-ultraviolet radiation in the aphakic monkey, Am. J. Ophthalmol 93, pp. 299–306.

    PubMed  Google Scholar 

  • Hanson, K.M. (1979). Detectability in CT images, Med. Phys. 6, pp. 441–451.

    Article  PubMed  CAS  Google Scholar 

  • Hanson, K.M. (1981). Noise and contrast discrimination in CT. In: Technical aspects of computed tomography. Newton and Potts (eds.), C.V. Mosby Company, St. Louis.

    Google Scholar 

  • Hanson, K.M. (1981). Noise and contrast discrimination in computed tomography. In: Technical aspects of computed tomography. Newton and Potts (eds.), C.V. Mosby Company, St. Louis, chapter 113.

    Google Scholar 

  • Hanson, K.M. (1983). Variations in task and the ideal observer, S.P.I.E. 419, pp. 60–67.

    Google Scholar 

  • Hanson, K.M. (1984). Optimal object and edge localization in the presence of correlated noise, S.P.I.E. 454, pp.-17.

    Google Scholar 

  • Haque, P. (1981). In Technical Aspects of CT, Vol.5 of Radiology of the Skull and Brain. Newton and Potts, (eds.), C.V. Mosby, St. Louis, p. 4131.

    Google Scholar 

  • Hay, G.A. and Chester, M.S. (1972). A model of visual threshold detection, J. Theor. Biol. 67, 221–240 and also

    Article  Google Scholar 

  • Hay, G.A. and Chester, M.S. J. Opt. Soc. Am. 62, 990 (1972).

    Article  PubMed  CAS  Google Scholar 

  • Hemmingsson, A., Jung, B., Naslund L., and Ytterbergh, C. (1981). Perceptability of experimental and clinical lesions in the CT image with and without image processing, Acta Radiologica 22, pp. 67–76.

    CAS  Google Scholar 

  • Herath, K.B., and Sharp, P.J. (1976). The effects of matched filter smoothing as measured by ROC curve, Phys. Med. Biol. 21, pp. 442–446.

    Article  PubMed  CAS  Google Scholar 

  • Hillard, A., Myles-Worsley, M., Johnston, W., and Baxter, B. (1985). The development of radiological schemata through training and experience, Invest. Radiol. 20, pp, 422–425.

    Article  PubMed  CAS  Google Scholar 

  • Hubel, D.H., and Wiesel, T.N. (1977). Ferrier Lecture, Proc. Roy. Soc. B. 198, p. 1.

    Article  CAS  Google Scholar 

  • Ishida, M., Doi, K., Loo, L.N., Metz, C.E., Lehr, J.L. (1984). Digital image processing: effect on detectability of simulated low-contrast radiographic patterns, Radiology 150, pp. 569–575.

    PubMed  CAS  Google Scholar 

  • Lythgoe, J.N. (1979). Ecology of vision, Clarendon Press, Oxford.

    Google Scholar 

  • Jaques, P., DiBianca, F., Pizer, S., Kohout, F., Lifshitz L., and Delany, D. (1985). Quantitative digital fluorography — computer vs. human estimation of vascular stenoses, Invest. Rad. 20, pp. 45–52.

    Article  CAS  Google Scholar 

  • Joseph, P.M. (1977). Tradeoff between resolution and density discrimination in CT scanners.

    Google Scholar 

  • Judy, P.F., and Swensson, R.G. (1985). Detection of small focal lesions in CT images: effects of reconstruction filters and visual display windows, Br. J. Radiol. 58, pp. 137–145.

    Article  PubMed  CAS  Google Scholar 

  • Judy, P.F., Swensson, R.G. (1985). Detectability of lesions of various sizes on CT images, S.P.I.E. 535, pp. 38–42.

    Google Scholar 

  • Judy, P.F. and Swensson, R.G. (1986). Size discrimination of features on CT images, S.P.I.E. 626, pp. 225–230.

    Google Scholar 

  • Judy, P.F. and Swensson, R.G. (1987). Display thresholding of images and observer detection performance, J. Opt. Soc. Am. A4, pp. 954–965.

    Article  Google Scholar 

  • Judy, P.F., Swensson, R.G. and Kijewski, M.F. (1987). Observer efficiency and feature polarity, S.P.I.E. 767, pp.310–316.

    Google Scholar 

  • Judy, P.F., Swensson, R.G., and Szulc, M. (1981). Lesion detection and signal-to-noise ratio in CT images, Med. Phys. 8, pp. 12–23.

    Article  Google Scholar 

  • Kasal, B., Sharp, P.F., and Dendy, P.P. (1983). Relationship between objective and subjective assessment of gamma ray image sharpness. Phys. Med. Biol. 28, pp. 1127–1134.

    Article  PubMed  CAS  Google Scholar 

  • Kelsey, C.A., Mosely, R.D., Mettler, F.A., Garcia, J.F., Parker, T.W., and Briscoe, D.E. (1982). Comparison of nodule detection with 70 kvp and 120 kvp chest radiographs, Radiology 143, pp. 609–611.

    PubMed  CAS  Google Scholar 

  • Kersten, D. (1984). Spatial summation in visual noise, Vision Res. 24, pp. 1977–1990.

    Article  PubMed  CAS  Google Scholar 

  • Kersten, D. (1987). Statistical efficiency for the detection of visual noise, Vision Res. 27, pp. 1029–1040.

    Article  PubMed  CAS  Google Scholar 

  • Kirshfeld, K. (1976). The resolution of lens and compound eyes. In: Neural Principles in Vision. Weiler, R. (ed.) Springer, Berlin.

    Google Scholar 

  • Kozima, K., and Uchida, S. (1982). Noise smoothing in image improvement, Optica Acta 29, pp. 371–376.

    Article  CAS  Google Scholar 

  • Kuhl, D.E., Sanders, T.D., Edwards, R.Q., and Mecker, P.T. (1972). Failure to improve observer performance with scan smoothing, J. Nucl. Med. 13, pp. 752–757.

    PubMed  CAS  Google Scholar 

  • Kume, Y., Doi, K., Ohara, K., and Gigar, M.L. (1986). Investigation of basic imaging properties of digital radiography. 10. Structure mottle in II-TV digital imaging systems, Med. Phys. 13, pp. 843–849.

    Article  PubMed  CAS  Google Scholar 

  • Kundel, H.L. (1979) Images, image quality, and observer performance. Radiology 132, pp. 265–271 and also

    PubMed  CAS  Google Scholar 

  • Kundel, H.L. (1979) Images, image quality, and observer performance. Radiology 103, 523–528 (1972).

    Google Scholar 

  • Kundel, H.L., Nodine, C.F., Thickman, D., Carmody, D., and Toto, L. (1985). Nodule detection with and without a chest image, Invest. Radiol 20, pp. 94–99.

    Article  PubMed  CAS  Google Scholar 

  • Kundel, H.L., Nodine, C.F., Thickman, D., and Toto, L. (1987). Searching for lung nodules — a comparison of human performance with random and systematic scanning models, Invest. Rad. 22, pp. 417–422.

    Article  CAS  Google Scholar 

  • Land, M.F. (1981). Optics and vision in invertebrates. In: Handbook of Sensory Physiology, Vol.VII/6B, Autrum, H. (ed.), Springer-Verlag, Berlin.

    Google Scholar 

  • Legge, G.E., Kersten, D., and Burgess, A.E. (1987). Contrast discrimination in noise, J. Opt. Soc. Am. A4, pp. 381–404.

    Google Scholar 

  • Livingstone, M., and Hubel, D. (1988). Segregation of form, color, movement, and depth-anatomy, physiology, and perception, Science 240, pp. 740–749.

    Article  PubMed  CAS  Google Scholar 

  • Loo, L.D., Doi, K. and Metz, C.E. (1985). Investigation of basic imaging properties of digital radiography. 4. Effect of unsharp masking on the detectability of simple patterns. Med. Phys. 12, pp. 209–214.

    Article  PubMed  CAS  Google Scholar 

  • Loo, L.D., Doi, K. and Metz, C.E. (1984). A comparison of physical image quality indices and observer performance in the radiographic detection of nylon beads, Phys. Med. Biol. 29, pp. 837–856.

    Article  PubMed  CAS  Google Scholar 

  • Lorre, J.L. and Gillespie, A.R. (1980). Artifacts in digital images, S.P.I.E. Proc. 264, pp. 123–135.

    Google Scholar 

  • Lusted, L.B. (1968). Introduction to medical decision making, Thomas, Springfield, IL.

    Google Scholar 

  • Marr, D. (1982). Vision, W.H. Freeman, San Francisco.

    Google Scholar 

  • McAdams, H.P., Johnson, G.A., Suddarth, S.A., and Ravin, C.E. (1986). Histogram-directed processing of digital chest images, Invest. Rad. 21, pp. 253–259.

    Article  CAS  Google Scholar 

  • Metz, C.E. (1978). Basic principles of ROC analysis, Semin. Nucl. Med. 8, p. 283.

    Article  PubMed  CAS  Google Scholar 

  • Metz, C.E. and Goodenough, D.J. (1973). On failure to improve observer performance with scan smoothing: a rebuttal, J. Nucl. Med. 14, pp.873–876.

    PubMed  CAS  Google Scholar 

  • Moseley, R.D., and Rust, J.H. (1965). Diagnostic radiological instrumentation, Charles C. Thomas. Springfield, Illinois.

    Google Scholar 

  • Myers, K.J. (1985). Visual perception in correlated noise, Ph.D. Thesis, Univ. of Arizona.

    Google Scholar 

  • Myers, K.J., Barrett, H.H. (1987). A channels-based model. J. Opt. Soc. Am. A4, pp.2447–2457.

    Article  Google Scholar 

  • Myers, K.J., Barrett, H.H., Borgstrom, M.C., Patton, D.D., and Seeley, G.W. (1985). Is ideal-observer signal-to-noise ratio a good predictor of human performance? S.P.I.E. 535, pp. 12–15.

    Google Scholar 

  • Myers, K.J., Barrett, H.H., Borgstrom, M.C., Patton, D.D., and Seeley, G.W. (1985). Effect of noise signals in medical imaging. J. Opt. Soc. Am. A2, pp. 1752–1759.

    Article  Google Scholar 

  • Nagaraja, N.S. (1964). Effect of luminance noise on contrast thresholds, J. Opt.Soc.Am. 54, pp. 950–955.

    Article  Google Scholar 

  • Ohara, K., Chan, H.-P., Doi, K., Gigar. M.L., and Fujita, H. (1986). Investigation of basic imaging properties of digital radiography. 8. Detection of simulated low-contrast objects in digital subtraction angiography, Med. Phys. 13, pp. 304–311.

    Article  PubMed  CAS  Google Scholar 

  • Parker, T.W., Kelsey, C.A., Moseley, R.D., Mettler, F.A., Garcia, J.F., and Briscoe, D.E. (1982). Directed versus free search for nodules in chest radiographs, Invest. Radiol. 17, pp. 152–155.

    Article  PubMed  CAS  Google Scholar 

  • Pearson, D.E. (1975). Transmission and display of pictorial information, Pentech Press, London.

    Google Scholar 

  • Pelli, D. (1981). Effects of visual noise, doctoral dissertation (University of Cambridge, Cambridge).

    Google Scholar 

  • Penney, B.C., King, M.A., Schwinger, R.B., Stritzke, P., Doherty, P.W., and Baker, S.P. (1987). Convolution squared error versus observer preference, S.P.I.E. 767, pp. 317–323.

    Google Scholar 

  • Pizer, S.M., Austin, J.D., Perry, J.R., Safrit, H.D., and Zimmerman, J.B. (1986). Adaptive histogram equalization for automatic contrast enhancement of medical images, S.P.I.E. 626, pp. 242–250.

    Google Scholar 

  • Pizer, S.M., Zimmerman, J.B., and Johnston, F.E. (1981). Contrast transmission in medical imaging display. Proceedings ISMIII’ 82, IEEE Computer Society. Also see S.P.I.E. Proceedings 271, 21–27 (1981).

    Google Scholar 

  • Pratt, W.K. (1978). Digital image processing, Wiley & Sons, New York, p.154.

    Google Scholar 

  • Pullin, B.R., Tichings, C.T., Isherwood, I., and Adams, J.E. (1980). Effect of smoothing brain scans. J.C.A.T. 4, pp. 91–93.

    Google Scholar 

  • Raemer, H.R. (1969). Statistical communication theory and applications, Prentice-Hall, New York.

    Google Scholar 

  • Ravesz, G., Kundel, H.L., and Graber, M.A. (1974). The influence of structured noise on the detection of radiological abnormalities, Invest. Rad. 9, pp. 479–486.

    Article  Google Scholar 

  • Regan, D. (1982). Visual information channeling in normal and disordered vision, Psych. Review 89, pp. 407–444.

    Article  CAS  Google Scholar 

  • Revesz, G., Kundel, H.L., and Bonitatibus, M. (1983). The effect of verification on the assessment of imaging techniques, Invest. Radiol. 18, pp. 194–198.

    Article  PubMed  CAS  Google Scholar 

  • Rimkus D., and Baily, N.A. (1984). Patient exposure requirements for high contrast resolution in digital radiographic systems. A.J.R. 142, pp. 603–608.

    CAS  Google Scholar 

  • Rogers, D.C., Johnston, R.E., and Pizer, S.M. (1987). Effect of ambient light on elecltronically displayed medical images as measured by luminance discrimination thresholds, J. Opt. Soc. Am. A4, pp. 976–983.

    Article  Google Scholar 

  • Rose, A. (1948). Sensitivity of the eye on an absolute scale, J. Opt. Soc. Am. 38, pp. 196–208.

    Article  PubMed  CAS  Google Scholar 

  • Rose, A. (1973). Vision — human and electronic, Plenum Press, New York.

    Google Scholar 

  • Rosell, F.A., and Wilson, R.H. (1973). Recent psychophysical experiments and the display SNR concept. In: Perception of displayed information. (Chapter 5). L.M. Biberman (ed.), Plenum Press, New York. Also see A.D. Schnitzler in the same book (Chapter 4).

    Google Scholar 

  • Sakitt, B., and Barlow, H.B. (1982). A model for the economical encoding of the visual imaging in cerebral cortex, Biological Cybernetics 43, pp. 97–110.

    Article  PubMed  CAS  Google Scholar 

  • Second International Conference on Visual Psychophysics and Medical Imaging (1981). IEEE Engineering in Medicine and Biology Society, IEE Cat. No. 81Ch1676-6.

    Google Scholar 

  • Seeley, G.W., Robles-Sotelo, E., Cannon, G., Bjelland, J.C., Ovitt, T.W., Standon, J., Capp, M.P., Fisher, H.D., and Dallas, W.J. (1987). The use of psychophysics as a system design aid — comparison of film-screen with an electronic review console, S.P.I.E. 767, pp. 639–643.

    Google Scholar 

  • Seeley, G.W., Roehrig, H. and Hillman, B.J. (1984). A computerized method for the measurement of conspicuity, Invest. Rad. 19, pp. 583–586.

    Article  CAS  Google Scholar 

  • Seltzer, S.E. Swensson, R.G., Judy, P.F., and Nawfel, R.D. (1988, in press). Size discrimination in CT images: effect of feature contrast and display window, Invest. Radiol.

    Google Scholar 

  • Selzer, R. (1968). The use of computers to improve biomedical image quality, Proc, Face Joint Computer Conference 33, pp. 817–834.

    Google Scholar 

  • Sezan, M.I., Yip, K.L., and Daly, S.J. (1987) An investigation of the effects of uniform perceptual quantization in the context of digital radiography, S.P.I.E. 767, pp. 622–630.

    Google Scholar 

  • Sharp, P.F., Chesser, R.B., and Mallard, J.R. (1982). The influence of picture element size on the quality of clinical radionuclide image, Phys. Med. Biol. 27, pp. 913–926.

    Article  PubMed  CAS  Google Scholar 

  • Simmons, J.A. (1973). The resolution of target range by echo locating bats, J. Acoust. Soc. Am. 54, p. 157–173.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, A.W. (1975). Photoreceptor optics — theoretical principles. In: Photoreceptor Optics, Springer-Verlag, Berlin.

    Chapter  Google Scholar 

  • Sorenson, J.A., Mitchell, C.R., Armstrong, J.D., Mann, H., Bragg, D.G., Mann, F.A., Tocino, I.B., and Wojtowcyz, M.M. (1987). Effects of improved contrast on lung-nodule detection. A clinical ROC study, Invest. Rad. 22, pp. 772–780.

    Article  CAS  Google Scholar 

  • Srinivasan, M.S., Laughlin, S.B., and Dubs, A. Predictive coding: a fresh view of inhibition in the retina. Proc. Roy. Soc. (London).

    Google Scholar 

  • Starr, S.J., Metz, C.E., Lusted, L.B., and Goodenough, D.J. (1975). Visual detection and localization of radiographic images, Radiology 116, pp. 533–538.

    PubMed  CAS  Google Scholar 

  • Sturm, R.E., and Morgan, R.H. (1949). Screen intensification systems and their limitations, A.J.R. 52, pp. 617–634.

    Google Scholar 

  • Swensson, R.G., Hessel, S.J., and Herman, P.G. (1982). Radiographic interpretation with and without search — visual search aids in the recognition of chest pathology, Invest. Radiol. 17, pp.145–151.

    Article  PubMed  CAS  Google Scholar 

  • Swensson, R.G., Hessel S.J., and Herman, P.G. (1985). Author’s Response, Invest. Radiol. 20, pp.111–113.

    Article  Google Scholar 

  • Swets, J.A. (1964). Signal detection and recognition by human observers, Wiley, New York.

    Google Scholar 

  • Swets, J.A. (1985). On the supposed value of searching films, Invest. Radiol. 20, pp. 108–109.

    Article  Google Scholar 

  • Swets, J.A., and Pickett, R.M. (1982). Evaluation of diagnostic systems —methods from signal detection theory, Academic Press, New York.

    Google Scholar 

  • Swets, J.A., Pickett, R.M., Whitehead, S.F., Getty, D.J., Schnur, J.A., Swets. J.B., and Freeman, B.A. (1979). Assessment of diagnostic technologies, Science 205, pp. 735–759.

    Article  Google Scholar 

  • Tanner, W.P., and Birdsall, T.G. (1958). Definitions of d’ and ⋂ as psychophysical measures, J. Acoust. Soc. Am. 30, pp. 922–928.

    Article  Google Scholar 

  • Tesic, M.M., Sones, R.A., and Morgan, D.R. (1984). Single-slit digital radiography, A.J.R. 142, pp. 697–702.

    CAS  Google Scholar 

  • Tuddenhamm W.J. (1969). Perception of the roentgen image, Radiologic Clinics of North America 7, W.B. Saunders Co., Philadelphia.

    Google Scholar 

  • Uttal, W.R. (1981). A taxonomy of visual processes. L. Erlbaum Associates, Hillsdale, NJ.

    Google Scholar 

  • Van Meeteren, A., and Valeton, J.M. (1988). Effects of pictorial noise interfering with visual noise, J. Opt. Soc. Am. A5, pp. 438–444.

    Article  Google Scholar 

  • VanTrees, H.L. (1968). Detection, estimation and modulation theory. Volumes I, II and III, John Wiley, New York.

    Google Scholar 

  • Vos, J.J., and VanNorren, D. (1984). Limits in the visual spectrum. In: Limits in perception, Van Doom, A.J., Van de Grind, W.A., and Koenderink, J.J., (eds.), VNU Science Press, Utrecht, pp. 66–84.

    Google Scholar 

  • Wagner, L.K. and Cohen, G. (1982). Energy dependence of contrast detail dose and objective detectability dose curves for CT scanners, J. Comput. Assist. Tomogr. 6, pp. 378–382.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, R.F. (1977). Toward a unified view of radiological imaging systems. Part II: Noisy Images, Med. Phys. 4, pp. 279–296.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, R.F. and Barrett, H.H. (1987). Quadratic tasks and the ideal observer. In Medical imaging, R.H. Schneider and S.J. Dwyer, (eds.), Proc. Soc. Photo-Opt. Instrum. Eng. 767, p. 306-309.

    Google Scholar 

  • Wagner, R.F. and Brown, D.G. (1985). Unified SNR analysis of medical imaging systems, Phys. Med. Biol. 30, pp. 489–518.

    Article  CAS  Google Scholar 

  • Wagner, R.F., Brown, D.G., and Pastel, M.S. (1979). Application of information theory to the assessment of CT, Med. Phys. 6, pp. 83–94.

    Article  PubMed  CAS  Google Scholar 

  • Wagner, R.F., Brown, D.G., Burgess, A.E., and Hanson, K. (1983). The observer SNR penalty for image reconstruction from projections, Magnetic Resonance in Medicine 1, pp. 76–77.

    Article  Google Scholar 

  • Wagner, R.F., Insana, M.F., and Brown, D.G. (1985). Progress in signal and texture discrimination in medical imaging, S.P.I.E. 535, pp. 57–63.

    Google Scholar 

  • Warren, R.C. (1984). Detectability of low-contrast features in computed tomography, Phys. Med. Biol. 29, pp. 1–13.

    Article  PubMed  CAS  Google Scholar 

  • Watson, A.B. (1983). Detection and recognition of simple spatial forms. In: Physical and biological processing of images, Braddock, O.J., and Sleigh, A.C. (eds.), Springer-Verlag, New York, pp. 100–114.

    Chapter  Google Scholar 

  • Webster, E.W., and Wipfelder, R. (1964). Contrast and detail perception in television and ciné systems for medical fluoroscopy, J. Soc. Motion Picture Television End. 73, p. 617.

    Google Scholar 

  • Wilcox, G.W. (1968). Inter-observer agreement and models of monaural auditory processing in detection task, doctoral dissertation (University of Michigan, Ann Arbor, Mich.).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Burgess, A.E. (1992). Perception and Detection of Signals in Medical Images. In: Todd-Pokropek, A.E., Viergever, M.A. (eds) Medical Images: Formation, Handling and Evaluation. NATO ASI Series, vol 98. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77888-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77888-9_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77890-2

  • Online ISBN: 978-3-642-77888-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics