Skip to main content

Reepithelialisation of Wounds

  • Conference paper

Abstract

Reepithelialisation of wounds involves a number of different processes affecting the biology of the keratinocyte. Following breaching of the epidermis the keratinocytes must first migrate across the surface of the denuded area, then mitosis must occur close to the edge to expand the population (Odland and Ross 1968; Krawczyck 1971; Clark 1985). Once keratinocytes have covered the defect they must establish a basement membrane zone, which aids keratinocyte attachment. Then stratification and differentiation must occur to normalise the newly regenerated epidermis. Subsequently the dermis is remodelled, which also involves the keratinocytes by keratinocytemesenchymal interactions mediated by cell contact, diffusible cytokines and extracellular matrix proteins. Replacement of a denuded area of skin by different forms of skin grafts, including keratinocyte sheets, will accelerate the epithelialisation process. These biological processes of keratinocytes will be discussed following an introduction to keratinocyte culture, which provides the basis for many observations applicable to wound healing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adams JC, Watt FM (1989) Fibronectin inhibits the terminal differentiation of human keratinocytes. Nature 340:307–309.

    Article  PubMed  CAS  Google Scholar 

  • Adams JC, Watt FM (1990) Changes in keratinocyte adhesion during terminal differentiation: reduction in fibronectin binding precedes α5β1 integrin loss from cell surface. J Cell Biol 110:1387–1404.

    Article  Google Scholar 

  • Adams JC, Watt FM (1991) Expression of β1,β3,β4,β5 integrins by human epidermal keratinocytes and nondifferentiating keratinocytes. J Cell Biol 115:829–841.

    Article  PubMed  CAS  Google Scholar 

  • Albers KM, Setzer RW, Taichman L (1986) Heterogeneity in the replicating population of cultured human epidermal keratinocytes. Differentiation 31:134–140.

    Article  PubMed  CAS  Google Scholar 

  • Alitalo K, Kuismanen E, Myllyla R, Kiistala U, Asko-Selijavaara S, Vaheri A (1982) Extracellular proteins of human epidermal keratinocytes and feeder 3T3 cells. J Cell Biol 94:497–505.

    Article  PubMed  CAS  Google Scholar 

  • Asselinean D, Pruneiras M (1984) Reconstruction of “simplified” skin: control of fabrication. Br J Dermatol 111 Suppl 27:219–222.

    Article  Google Scholar 

  • Barker JNWN, Sarma V, Mitra RS, Dixit V, Nickoloff BJ (1990) Marked synergism between tumour necrosis factor α and interferon gamma in the regulation of keratinocyte derived adhesion molecules and chemotactic factors. J Clin Invest 85:605–608.

    Article  PubMed  CAS  Google Scholar 

  • Barrandon Y, Green H (1987) Cell migration is essential for sustained growth of keratinocyte colonies: the roles of transforming growth factor-α and epidermal growth factor. Cell 50:1131–1137.

    Article  PubMed  CAS  Google Scholar 

  • Bell E, Sher S, Hull B, Merrill C, Rosen S, Chamson A, Asselineau D, Dubertret L, Coulomb B, Lapier C, Nusgens B, Nevreux Y (1983) The reconstruction of living skin. J Invest Dermatol 81:2s–10s.

    Article  PubMed  CAS  Google Scholar 

  • Blair SD, Backhouse CM, Wright DDI, Riddle E, McCollum CN (1988a) Do dressings influence the healing of chronic venous ulcers?. Phlebology 3:129–134.

    Google Scholar 

  • Blair SD, Wright DDI, Backhouse CM, Riddle E, McCollum CN (1988b) Sustained compression and healing of chronic venous ulcers. Br Med J 297:1159–1161.

    Article  CAS  Google Scholar 

  • Boyce ST, Hansbrough JF (1988) Biologic attachment, growth, and differentiation of cultured human epidermal keratinocytes on a graftable collagen and chondroitin-6 sulfate substrate. Surgery 103:421–431.

    PubMed  CAS  Google Scholar 

  • Boyce ST, Ham RG (1985) Cultivation, frozen storage, and clonal growth of normal human epidermal keratinocytes in serum-free media. J Tissue Cult Methods 9:83–93.

    Article  Google Scholar 

  • Brain A, Purkis P, Coates P, Hackett M, Navsaria H, Leigh IM (1989) Survival of cultured allogeneic keratinocytes transplanted to deep dermal bed assessed with probe specific for Y chromosome. Br Med J 298:917–919.

    Article  CAS  Google Scholar 

  • Briggaman R, Wheeler CE Jr (1975) The epidermal-dermal junction. J Invest Dermatol 65:71–84.

    Article  PubMed  CAS  Google Scholar 

  • Burke JF, Yannas IV, Quinby WC, Bondoc CC, Jung WK (1981) Successful use of a physiologically acceptable artificial skin in the treatment of extensive burn injury. Ann Surg 194:413–427.

    Article  PubMed  CAS  Google Scholar 

  • Burt AM, Pallett CD, Sloane JP, O’Hare MJ, Schafler KF, Yardeni P, Eldad A, Clarke JA, Gusterson BA (1989) Survival of cultured allografts in burns assessed with probe specific for Y chromosome. Br Med J 298:915–917.

    Article  CAS  Google Scholar 

  • Carter WG, Wayner EA, Bouchard TS, Kaur P (1990) The role of integrins α2β1 and α3β1 in cell-cell and cell-substrate adhesion of human epidermal cells. J Cell Biol 110:1387–1404.

    Article  PubMed  CAS  Google Scholar 

  • Carver N, Leigh IM (1992) Synthetic dressings. Int J Dermatol 31:10–18.

    Article  PubMed  CAS  Google Scholar 

  • Clark RAF (1985) Cutaneous tissue repair: basic biologic considerations. J Am Acad Dermatol 13:701–725.

    Article  PubMed  CAS  Google Scholar 

  • Clark RAF (1990) Fibronectin matrix deposition and fibronectin receptor expression in healing and normal skin. J Invest Dermatol 96:128s–134s.

    Article  Google Scholar 

  • Clark RAF, Lanigan JM, Delia Pelle P, Manseau E, Dvorak HF, Colvin RB (1982) Fibronectin and fibrin provide a provisional matrix for epidermal cell migration during wound reepithelialization. J Invest Dermatol 79:264–269.

    Article  PubMed  CAS  Google Scholar 

  • Coffey RJ, Derynck R, Wilcox JN, Bringman TS, Goustin AS, Moses HL, Pittelkow MR (1987) Production and auto-induction of transforming growth factor alpha in human keratinocytes. Nature 328:817–820.

    Article  PubMed  CAS  Google Scholar 

  • Compton CC, Gill JM, Bradford DA, Regauer S, Gallico GG, O’Connor NE (1989) Skin regenerated from cultured epithelial autografts on full thickness burns wounds from 6 days to 5 years after grafting. Lab Invest 60:600–612.

    PubMed  CAS  Google Scholar 

  • Cotsarelis G, Sun T-T, Lavker RM (1990) Label-retaining cells reside in the bulge area of pilosebaceous unit: implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 61:1329–1337.

    Article  PubMed  CAS  Google Scholar 

  • Cuono C, Langdon R, McGuire J (1986) Use of cultured epidermal autografts and dermal allografts as skin replacement after burn injury. Lancet 1:1123–1124.

    Article  PubMed  CAS  Google Scholar 

  • Cuono C, Langdon R, Birchall N, Barttelbort S, McGuire J (1987) Composite autologousallogenic skin replacement: development and clinical application. Plast Reconstr Surg 80:626–635.

    Article  PubMed  CAS  Google Scholar 

  • Fuchs E (1990) Epidermal differentiation. Curr Opin Cell Biol 2:1028–1035.

    Article  PubMed  CAS  Google Scholar 

  • Green H (1978) Cyclic AMP in relation to proliferation of the epidermal cell: a new view. Cell 15:801–811.

    Article  PubMed  CAS  Google Scholar 

  • Green H (1980) The keratinocyte as differentiated cell type. Harvey Lect Ser 74:101–139.

    CAS  Google Scholar 

  • Green H, Kehinde O, Thomas J (1979) Growth of cultured human epidermal cells into multiple epithelia suitable for grafting. Proc Natl Acad Sci USA 76:5665–5668.

    Article  PubMed  CAS  Google Scholar 

  • Grinnell F (1992) Wound repair, keratinocyte activation and integrin modulation. J Cell Sci 101:1–5.

    PubMed  CAS  Google Scholar 

  • Grossman RM, Krueger J, Yourish D (1989) IL6 is expressed in high levels in psoriatic skin and stimulates proliferation of cultured human keratinocytes. Proc Natl Acad Sci USA 86:6367–6371.

    Article  PubMed  CAS  Google Scholar 

  • Guo M, Toda K-I, Grinnell F (1990) Activation of human keratinocyte migration on type I collagen and fibronectin. J Cell Sci 96:197–205.

    PubMed  CAS  Google Scholar 

  • Hansborough JF, Boyce ST, Cooper ML, Foreman TJ (1989) Burn wound closure with cultured autologous keratinocytes and fibroblasts attached to a collagen-glycosaminoglycan substrate. JAMA 262:2125–2130.

    Article  Google Scholar 

  • Heck EL, Bergstresser PR, Baxter CR (1985) Composite skin grafts: frozen dermal allografts support the engraftment and expansion of autologous epidermis. J Trauma 25:106–112.

    Article  PubMed  CAS  Google Scholar 

  • Hennings H, Michael D, Cheng C, Steinert P, Holbrook K, Yuspa SH (1980) Calcium regulation of growth and differentiation of mouse epidermal cells in culture. Cell 19:245–254.

    Article  PubMed  CAS  Google Scholar 

  • Hertle M, Kubier M-D, Leigh IM, Watt FM (1992) Aberrant integrin expression during epidermal wound healing and in psoriatic epidermis. J Clin Invest 89:1892–1901.

    Article  PubMed  CAS  Google Scholar 

  • Holbrook KA (1989) Biological structure and function: perspectives on morphological approaches to the study of the granular layer keratinocyte. J Invest Dermatol 92:84–104.

    Article  Google Scholar 

  • Holbrook KA, Wolff K (1987) Structure and development of skin. In: Fitzpatrick TB, Eisen AZ, Wolf K, Freidberg IM, Austen KF (eds) Dermatology in general medicine, 3rd edn. McGraw-Hill, New York, pp 93–131.

    Google Scholar 

  • Hull BE, Finley RK, Miller SF (1990) Coverage of full thickness burns with bilayered skin equivalents: a preliminary clinical trial. Surgery 107:496–502.

    PubMed  CAS  Google Scholar 

  • Hunter JAA, McVittie E, Comaish JS (1974) Light and electron microscopy studies of physical injury to the skin. I. Suction. Br J Dermatol 90:481–490.

    Article  PubMed  CAS  Google Scholar 

  • Hynes RO (1987) Integrins: a family of cell surface receptors. Cell 48:549–554.

    Article  PubMed  CAS  Google Scholar 

  • Krawczyck WS (1971) A pattern of epidermal cell migration during wound healing. J Cell Biol 49:247–263.

    Article  Google Scholar 

  • Kupper TS, Horowitz M, Birchall N, Mizutani H, Coleman D, McGuire J, Flood P, Dower S, Lee F (1988) Haemopoietic, lymphopoietic and proinflammatory cytokines produced by human and murine keratinocytes. Ann N Y Acad Sci 548:262–270.

    Article  PubMed  CAS  Google Scholar 

  • Leigh IM, McKay I, Carver N, Navsaria H, Green C (1991) Skin equivalents and cultured skin: from the Petri dish to the patient. Wounds 3:141–148.

    Google Scholar 

  • Lynch SE, Nixon JC, Colvin RB, Antoniades HN (1987) Role of platelet derived growth factor in wound healing: synergistic effects with other growth factors. Proc Natl Acad Sci USA 84:7696–7700.

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie IC, Fusenig NE (1983) Regeneration of organized epithelial structure. J Invest Dermatol 81:189s–194s.

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie IC, Hill MW (1984) Connective tissue influences on patterns of epithelial architecture and keratinisation in skin and oral mucosa of the adult mouse. Cell Tissue Res 235:551–559.

    Article  PubMed  CAS  Google Scholar 

  • Mackenzie RC, Sauder DN (1990) Keratinocyte cytokines and growth factors. Dermatol Clin 8:649–661.

    Google Scholar 

  • Mansbridge JN, Knapp AM (1987) Changes in keratinocyte maturation during wound healing. J Invest Dermatol 89:253–263.

    Article  PubMed  CAS  Google Scholar 

  • McGrath J, Scofield OMV, Ishida-Yamaoto A, O’Grady A, Mayou BJ, Navsaria H, Leigh IM, Eady RAJ (1993) Cultured keratinocyte allografts and wound healing in severe recessive dystrophic epidermolysis bullosa. J Am Acad Dermatol 29:407–419.

    Article  PubMed  CAS  Google Scholar 

  • McKay IA, Leigh IM (1990) Epidermal cytokines and their roles in cutaneous wound healing. Br J Dermatol 124:513–518.

    Article  Google Scholar 

  • Moll MAE, Nanning PB, van Eendenburg J-P, Westerhof W, Mekkes JR, van Ginkel CJ (1991) Grafting of venous ulcers; an intraindividual comparison between cultured skin quivalents and full thickness skin punch grafts. J Am Acad Dermatol 2:77–82.

    Article  Google Scholar 

  • Mustoe TA, Pierce GF, Thomason P, Gramates P, Sporn MB, Dueul TF (1987) Accelerated healing of incisional wounds in rats induced by transforming growth factor beta. Science 237:1333–1336.

    Article  PubMed  CAS  Google Scholar 

  • Nathan C, Sporn M (1991) Cytokines in context. J Cell Biol 113:981–986.

    Article  PubMed  CAS  Google Scholar 

  • Nickoloff BJ, Varani J, Mitra RSJ (1991) Modulation of keratinocyte biology by gamma interferon: relevance to cutaneous wound healing. Prog Clin Biol Res 365:141–154.

    PubMed  CAS  Google Scholar 

  • O’Connor NE, Mulliken JB, Banks-Schlegel S, Kehinde O, Green H (1981) Grafting of burns with cultured epithelium prepared from autologous epidermal cells. Lancet 1:75–78.

    Article  Google Scholar 

  • Odland G, Ross R (1968) Human wound repair. I. Epidermal regeneration. J Cell Biol 39:135–151.

    Article  PubMed  CAS  Google Scholar 

  • O’Keefe EJ, Woodley DT, Castillo G, Russell N, Payne RE (1984) Production of soluble and cell-associated fibronectin in cultured keratinocytes. J Invest Dermatol 82:150–155.

    Article  PubMed  Google Scholar 

  • O’Keefe EJ, Payne RE, Russell N (1985) Spreading and enhanced motility of human keratinocytes on fibronectin. J Invest Dermatol 85:125–130.

    Article  PubMed  Google Scholar 

  • Phillips T (1988) Cultured skin grafts: past, present, future. Arch Dermatol 124:1035–1038.

    Article  PubMed  CAS  Google Scholar 

  • Poskitt KR, Lloyd-Davies E, James A, McCollum CN (1985) Does pinch grafting accelerate the healing of chronic venous ulcers?. Br J Surg 72:401–402.

    Article  Google Scholar 

  • Potten CS, Morris RJ (1988) Epithelial stem cells in vivo. J Cell Sci 10:45–62.

    CAS  Google Scholar 

  • Pruneiras M, Regnier M, Woodley D (1983) Methods of cultivation of keratinocytes at an air liquid interface. J Invest Dermatol 81:28–33.

    Article  Google Scholar 

  • Rheinwald JG, Green H (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6:331–344.

    Article  PubMed  CAS  Google Scholar 

  • Rheinwald JG, Green H (1977) Epidermal growth factor and multiplication of cultured human epidermal keratinocytes. Nature 265:421–424.

    Article  PubMed  CAS  Google Scholar 

  • Sauder DN, Stanulis-Praeger BM, Gilchrest BA (1988) Autocrine stimulation of human keratinocytes by epidermal cell-derived thymocyte activating factor: implications for skin aging. Arch Dermatol Res 280:71–76.

    Article  PubMed  CAS  Google Scholar 

  • Schultz GS, White M, Mitchell R, Brown G, Lynch J, Twarzdick DR, Todaro GJ (1987) Epithelial wound healing enhanced by transforming growth factor α and vaccinia virus. Science 235:350–352.

    Article  PubMed  CAS  Google Scholar 

  • Shah M, Foreman DM, Ferguson MWF (1992) Control of scarring in adult wounds by neutralising antibody to transforming growth factor β. Lancet 339:213–214.

    Article  PubMed  CAS  Google Scholar 

  • Sporn MB, Roberts AB, Shull JM, Smith JM, Ward JM, Sodek J (1983) Polypeptide transforming growth factors isolated from bovine sources and used for wound healing in vivo. Science 219:1329–1331.

    Article  PubMed  CAS  Google Scholar 

  • Stanley JR, Hawley-Nelson P, Yaar M, Martin GR, Katz SI (1982) Laminin and bullous pemphigoid antigen are distinct basement membrane proteins synthesized by epidermal cells. J Invest Dermatol 78:456–459.

    Article  PubMed  CAS  Google Scholar 

  • Sun T-T, Eichner R, Nelson WG, Tseng SCG, Weiss RA, Jarvinen M, Woodcock-Mitchell J (1983) Keratin classes: molecular markers for different types of epithelial differentiation. J Invest Dermatol 81:109s–115s.

    Article  PubMed  CAS  Google Scholar 

  • Takashima A, Grinnell F (1985) Fibronectin-mediated keratinocyte migration and initiation of fibronectin receptor function. J Invest Dermatol 85:304–308.

    Article  PubMed  CAS  Google Scholar 

  • Tatnall FM, Leigh IM, Gibson JR (1990) Comparative study of antiseptic toxicity on basal keratinocytes, transformed human keratinocytes and fibroblasts. Skin Pharmacol 3:157–163.

    Article  PubMed  CAS  Google Scholar 

  • Timpl R (1989) Structure and biological activity of basement membrane proteins. Eur J Biochem 180:487–502.

    Article  PubMed  CAS  Google Scholar 

  • Van Brunt J, Klausner A (1988) Growth factors speed wound healing. Biotechnology 6:25–30.

    Article  Google Scholar 

  • Weinstein GD (1975) On the cell cycle of psoriasis. Br J Dermatol 92:229–230.

    Article  PubMed  CAS  Google Scholar 

  • Weiss RA, Eichner R, Sun T-T (1984) Monoclonal antibody analysis of keratin expression in epidermal diseases: a 48-and 56-kdalton keratin as molecular markers for hyperproliferative keratinocytes. J Cell Biol 98:1397–1406.

    Article  PubMed  CAS  Google Scholar 

  • Whitby DJ, Ferguson MWJ (1991) Immunohistochemical localisation of growth factors in fetal wound healing. Dev Biol 147:207–215.

    Article  PubMed  CAS  Google Scholar 

  • Winter GD (1972) Epidermal regeneration studied in the domestic pig. In: Maibach HI, Rovee DT (eds) Epidermal wound healing. Year Book Medical Publishers, Chicago, pp 71–112.

    Google Scholar 

  • Withers HR (1967) Recovery and repopulation in vivo by the mouse skin epithelial cells during fractionated irradiation. Radiat Res 32:227–239.

    Article  PubMed  CAS  Google Scholar 

  • Woodley DT, O’Keefe EJ, Prunieras M (1985) Cutaneous wound healing: a model for cellmatrix interactions. J Am Acad Dermatol 12:420–433.

    Article  PubMed  CAS  Google Scholar 

  • Woodley DT, Bachman PM, O’Keefe EJ (1988) Laminin inhibits human keratinocyte migration. J Cell Physiol 136:140–146.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leigh, I.M. (1995). Reepithelialisation of Wounds. In: Altmeyer, P., Hoffmann, K., el Gammal, S., Hutchinson, J. (eds) Wound Healing and Skin Physiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77882-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77882-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-56124-8

  • Online ISBN: 978-3-642-77882-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics