Fate of Persistent Organic Compounds in Soil and Water

  • M. Mansour
  • I. Scheunert
  • F. Korte
Part of the NATO ASI Series book series (volume 32)


The increasing contamination of the environment with organic chemicals necessitates a scientific appraisal of their environmental compatibility. In order to detect adverse effects as early as possible, evaluation parameters must be characterized to provide a primary indication of any environmental pollution resulting from the organic chemicals. Whether this is local or longterm global pollution or what is the consequence to the living environment from the application of the chemical concerned should be determined by an appropriate focussing of the data from these parameters. The parameters include the level of production, the area of application, the tendency to spread as well as the knowledge of the transformation of these chemicals under environmental conditions.


Humic Substance Humic Acid Global Radiation Conversion Product Direct Photolysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adrian P, Andreux F, Metche M, Mansour M, Korte F (1986) Autoxydation des ortho-diphénols cata1ysée par les ions Fe2+ et Mn2+: un modèle de formation des acides humiques. In: Comptes rendues de l’Académie des Sciences, 303 II. Paris, p 1615.Google Scholar
  2. Adrian P, Lahaniatis ES, Andreux F, Mansour M, Scheunert I, Korte F (1989) Reaction of the soil pollutant 4-chloroani1ine with the humic acid monomer catechol. Chemosphere 18: 1599–1609.CrossRefGoogle Scholar
  3. Brooks GT (1972) Pathways of enzymatic degradation of pesticides. In: Coulston F, Korte F (eds) Environmental quality and safety 1. Thieme, Academic Press, Stuttgart New York London, p 106.Google Scholar
  4. Brunner W, Focht DD (1984) Three-half-order kinetic model for microbial degradation of added carbon substrates in soil. Appl Environ Microbiol 47: 167–172.PubMedGoogle Scholar
  5. Choudhry GG (1984) Humic substances: Structural aspects and photophysical, photochemical and free radical characteristics. In: Hutzinger O (ed) The handbook of environmental chemistry, Vol. 1, Part C. Springer, Berlin, p 1.Google Scholar
  6. Cooper WJ, Zika RG (1983) Photochemical formation of hydrogen peroxide in surface and ground waters exposed to sunlight. Science 220: 711–712.PubMedCrossRefGoogle Scholar
  7. Draper WM (1985) Determination of wavelength-averaged, near UV quantum yields for environmental chemicals. Chemosphere 14: 1195–1290.CrossRefGoogle Scholar
  8. Draper WM, Crosby DG (1983) The photochemical generation of hydrogen peroxide in natural water. Arch Environ Contam Toxicol 12: 121–126.CrossRefGoogle Scholar
  9. Haag WR, Mill T (1987) Direct and indirect photolysis of water soluble azodyes: kinetic measurements and structure-activity relationships. Environ Toxicol Chem 6: 359–369.CrossRefGoogle Scholar
  10. Mansour M (1985) Photochemical degradation testing of some aromatic compounds in dilute aqueous solutions containing hydrogen peroxide. In: ACS Abstract Book Vol. 25, 1 (Division of Environmental Chemistry). American Chemical Society, p 305.Google Scholar
  11. Mansour M, Korte F (1986) Abiotic degradation pathways of selected xenobiotic compounds in the environment. In: Pawlowski L, Alaerts G (eds) The studies on environmental science 29 — Chemistry for protection of the environment. Elsevier Science Publ Co Inc, Amsterdam, p 257.Google Scholar
  12. Mansour M, Korte F, Méallier P (1986 b) Evaluating the fate of some pesticides in aquatic media exposed to artificial light. Presented at the 6th International Congress of Pesticide Chemistry (IUPAC), Ottawa, 10.–15.8.1986.Google Scholar
  13. Mansour M, Scheunert I, Korte F (1985) Behaviour of some organochlorine compounds in terrestrial ecosystems and abiotic degradabi1ity in the environment. In: Compte rendu de la quinzième réunion du Groupe Français des Pesticides. Grignon, p 1.Google Scholar
  14. Mansour M, Scheunert I, Viswanathan R, Korte F (1986 a) Assessment of the persistence of hexachlorobenzene in the ecosphere. In: Morris CR, Cabrai JRP (eds) Hexachlorobenzene: Proceedings of an International Symposium. IARC/WHO Scientific Publications, Lyon, p 53.Google Scholar
  15. Mansour M, Thaller S, Korte F (1981) Action of sunlight on parathion. Bull Environ Contam Toxicol 30: 358–364.CrossRefGoogle Scholar
  16. Miller GC, Zepp RG (1983) Extrapolating photolysis rates from the laboratory to the environment. Residue Reviews 85: 88–110.Google Scholar
  17. Neely WB (1978) An integrated approach to assessing the potential of organic chemicals in the environment. Presented at the workshop on philosophy and implementation of hazard assessment procedures for chemical substances in the aquatic environment, Waterville Valley, New Hampshire, 14.–18.8.1978.Google Scholar
  18. Scheunert I (1992) Transformation and degradation of pesticides in soil. In: Ebing W (ed) Chemistry of plant protection, Vol. 8. Springer, Berlin Heidelberg New York, p 23.Google Scholar
  19. Scheunert I, Dörfler U, Adrian P (1990) Biomineralisierung von Umweltchemikalien in verschiedenen Böden in Abhängigkeit von jahreszeitlichen Bedingungen. In: Verband Deutscher Landwirtschaftlicher Untersuchungs-und Forschungsanstalten (ed) Landwirtschaft im Spannungsfeld von Belastungsfaktoren und gesellschaftlichen Ansprüchen, Kongreßband 1990 Berlin. VDLUFA Verlag, Darmstadt, p 633.Google Scholar
  20. Scheunert I, Vockel D, Schmitzer J, Korte F (1987) Biomineralization rates of 14C-labelled organic chemicals in aerobic and anaerobic suspended soil. Chemosphere 16: 1031–1041.CrossRefGoogle Scholar
  21. Scow KM, Simkins S, Alexander M (1986) Kinetics of mineralization of organic compounds at low concentrations in soil. Appl Environ Microbiol 51: 1028–1035.PubMedGoogle Scholar
  22. Simkins S, Alexander M (1984) Models for mineralization kinetics with the variables of substrate concentration and population density. Appl Environ Microbiol 47: 1299–1306.PubMedGoogle Scholar
  23. Stevenson FJ (1982) Humus chemistry. John Wiley Interscience Publication, New York.Google Scholar
  24. Sundstrom G, Ruzo LO (1978) Photochemical transformation of pollutants in water. In: Hutzinger O, van Lelyveld LH, Zoeteman BCJ (eds) Aquatic transformation and biological effects. Pergamon Press, New York, p 205.Google Scholar
  25. Zafiriou OC (1974) Sources and reactions of OH and daughter radicals in seawater. J Geophys Res 79: 4491–4497.CrossRefGoogle Scholar
  26. Zepp RG, Schlotzhauer PF, Sink RM (1985) Photosensitized transformations involving electronic energy transfer in natural waters: role of humic substances. Environ Sci Technol 19: 74–81.CrossRefGoogle Scholar
  27. Zepp RG, Wolfe NL, Gordon JA, Baughman GL (1975) Dynamics of 2,4-D esters in surface waters. Hydrolysis, photolysis, and vaporization. Environ Sci Technol 9: 1144–1150.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  • M. Mansour
    • 1
  • I. Scheunert
    • 2
  • F. Korte
    • 3
  1. 1.Health Institut für Ökologische ChemieGSF — Research Center for EnvironmentFreising-AttachingGermany
  2. 2.Health Institut für Ökologische ChemieGSF — Research Center for EnvironmentNeuherbergGermany
  3. 3.Institut für ChemieTechnische Universität MünchenFreising-WeihenstephanGermany

Personalised recommendations