Skip to main content

Interactions of Toxic Organics with Subsoils Components

  • Conference paper
Migration and Fate of Pollutants in Soils and Subsoils

Part of the book series: NATO ASI Series ((ASIG,volume 32))

Abstract

Technological progress has certainly made life more pleasant but it has also increased the danger of environmental pollution. Groundwater is among the most seriously threatened environmental resources. Although groundwater contamination has occurred for centuries, population demands and agricultural activities, as well as increased industrialization, have certainly exacerbated the problem. Much of the concern over groundwater quality is due to the occurrence of anthropogenic organic compounds in these water resources; this concern is reflected by the U.S. priority pollutants list in which organic compounds are the majority (114/129≈88%) [Callahan et al. 1979].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bailey GW, White JL, Rothberg T (1968) Adsorption of organic herbicides by montmorillonite. Role of pH and chemical character of adsorbate. Soil Sci Soc Am Proc 32:222–234.

    Article  CAS  Google Scholar 

  • Bolt GH, Bruggenwert MGM (1978) Soil Chemistry. A. Basic elements. John Wiley & Sons, Inc, New York.

    Google Scholar 

  • Bolt GH, Van Riemsdijk WH (1987) Surface chemical processes in soil. In: Stumm W (ed) Aquatic surface chemistry, John Wiley & Sons, Inc, New York Chichester Toronto Singapore, p 127.

    Google Scholar 

  • Briggs AA (1981) Theoretical and experimental relationships between soil adsorption, octanol/water partition coefficients, water solubilities, bioconcentration factors, and the parachor. J Agric Food Chem 29:1050–1057.

    Article  CAS  Google Scholar 

  • Brown DS, Flag EV (1981) Empirical prediction of organic pollutant sorption in natural sediments. J Environ Qual 10:382–387.

    Article  CAS  Google Scholar 

  • Callahan MA, Slimak M, Gbel N, May I, Fowler C, Freed R, Jennings P, DuPree R, Whitmore F, Maestri B, Holt B, Gould C (1979) Water related environmental fate of 129 priority pollutants. EPA-44014-79029a,b, NTIS.

    Google Scholar 

  • Chiou CT, Peters LJ, Freed VJ (1979) A physical concept of soil-water equilibria for non ionic organic compounds. Science 206:831–832.

    Article  PubMed  CAS  Google Scholar 

  • Davis GA, Gloor R (1981) Adsorption of dissolved organics in lake water by aluminum oxide. Effect of molecular weight. Environ Sci Techn 15:1223–1229.

    Article  CAS  Google Scholar 

  • Dick SG, Fuerstenau DW, Healy TW (1971) Adsorption of alkylbenzene sulfonate surfactants at the alumina-water interface. J Colloid Interface Sci 37:595–602.

    Article  CAS  Google Scholar 

  • Dixon JB, Weed SB (eds) (1977) Minerals in soil environments. Soil Science Society of America, Madison, WI.

    Google Scholar 

  • Felsot A, Dahm PA (1979) Sorption of organophosphorous and carbamate insecticides by soil. J Agric Food Chem 27:557–559.

    Article  CAS  Google Scholar 

  • Fenn DB, Mortland MM (1972) Interlamelar metal complexes on layer silicates:2. Phenol complexes in smectites. In: Proc. Int. Clay Conf., Madrid, 591–603.

    Google Scholar 

  • Gerstl Z (1989) Predicting the mobility and availability of toxic organic chemicals. In: Gerstl Z, Chen Y, Mingelgrin U, Yaron B (eds) Toxic organic chemicals in porous media. Springer, Berlin Heidelberg New York, p 151.

    Chapter  Google Scholar 

  • Grim RE (1968) Clay mineralogy. McGraw Hill, New York.

    Google Scholar 

  • Hassett JJ, Banwart WL, Wood SG, Means JC (1981) Sorption of α-Naphthol; implications concerning the limits of hydrophobic sorption. Soil Sci Soc Am J 45:38–42.

    Article  CAS  Google Scholar 

  • Hassett JJ, Banwart WL, Griffin RA (1983) Correlation of compound properties with sorption characteristics of nonpolar compounds by soils and sediments: concept and limitations. In: Francis CW, Auerback SI (eds) Characterization, treatment and disposal, environment and solid wastes. Butterworth Publishers, p 161.

    Google Scholar 

  • Haymaker JW, Thompson JM (1972) Adsorption. In: Goring CM, Haymaker JM (eds) Organic chemicals in the soil environment, Dekker, New York p 49.

    Google Scholar 

  • Horzempa LM, Di Toro DM (1983) The extent of reversibility of polychlorinated biphenil adsorption. Water Res 17:851–859.

    Article  CAS  Google Scholar 

  • Howard PH (ed)(1989) Handbook of environmental fate and exposure data for organic chemicals. Lewis Publishers, Inc, Chelsea, Michigan.

    Google Scholar 

  • Israelachvili JN (1985) Intermolecular and surface forces. Academic Press, London

    Google Scholar 

  • Javfert CT, Westall JC, Glieder E, Schwarzenbach RP (1990) Distribution of hydrophobic ionogenic organic compounds between octanol and water: organic acids. Enviro Sci Technol 24:1795–1803.

    Article  Google Scholar 

  • Jones RAY (1979) Physical and mechanistic organic chemistry. Cambridge University Press, Cambridge U.K.

    Google Scholar 

  • Karickhoff S, Brown DS, Scott T (1979) Sorption of hydrophobic pollutants on natural sediments. Wat Res 13:241–248.

    Article  CAS  Google Scholar 

  • Karickhoff SW (1984) Organic pollutant sorption in aquatic systems. J Hydraul Eng 110:707–735.

    Article  Google Scholar 

  • Kenaga EE, Goring CAI (1980) Aquatic Toxicology. Eaton JG, Parrish PR, Hendricks (eds), ASTM special publication 770, Philadedelphia.

    Google Scholar 

  • Kortum G (1966) Lehrbuch der elektrochemie. Verlag Chemie, GMBH Weinheim

    Google Scholar 

  • Kown BT, Ewing BB (1969) Effect of the organic adsorption on clay ion exchange properties. Soil Sci 108:321–325.

    Article  CAS  Google Scholar 

  • Lee SL, Rao PSC, Nkedi-Kizza P, Delfino JJ (1990) Influence of solvent and sorbent characteristics on distribution of pentachlorophenol in octanol-water and soil-water systems. Environ Sci Technol 24:654–661.

    Article  CAS  Google Scholar 

  • Lyman WJ, Reehl WF, Rosenblatt DH (eds) (1982) Handbook of chemical property estimation methods; Environmental behavior of organic compounds. Mc Graw-Hill, New York.

    Google Scholar 

  • Means JC, Wood SG, Hassett JJ, Banwart WL (1980) Sorption of polynuclear aromatic hydrocarbons by sediments and soils. Environ Sci Technol 14:1524–1528.

    Article  CAS  Google Scholar 

  • Mingelgrin U, Gerstl Z (1983) Reevaluation of partitioning as a mechanism of nonionic chemical adsorption in soils. J Environ Qual 12:1–11.

    Article  CAS  Google Scholar 

  • Mortland MM (1970) Clay-organic complexes and interactions. Adv Agron 22:75–117

    Article  CAS  Google Scholar 

  • Nemethy G, Scheraga HA (1962) Structure of water and hydrophobic bonding in proteins. II: model for the thermodynamics properties of aqueous solutions of hydrocarbons. J Chem Phys 36:3401–3411.

    Article  CAS  Google Scholar 

  • Philen OD Jr, Weed SB, Weber JB (1970) Estimation of surface charge density of mica and vermiculite by competitive adsorption of Diquat vs. Paraquat. Soil Sci Soc Am Proc 34:527–531.

    Article  CAS  Google Scholar 

  • Philen OD Jr, Weed SB, Weber JB (1971) Surface charge characteristics of layer silicates by competitive adsorption of two organic divalent cations. Clays Clay Miner 19:295–302.

    Article  CAS  Google Scholar 

  • Rao PSC, Davison JM (1980) Estimation of pesticide retention and transformation parameters required in nonpoint source pollution models. In: Overcash MR, Davison JM (eds) Environmental impact of nonpoint source pollution. Ann Arbor Science Publischers, Ann Arbor, p 23.

    Google Scholar 

  • Salzman S, Yariv S (1975) Infrared study of the sorption of phenol and p-nitrophenol by montmorillonite. Soil Sci Soc Am J 39:474–479.

    Article  Google Scholar 

  • Schindler PW, Walti E, Furst B (1976) The role of surface hydroxyl groups in the surface chemistry of metal oxides. Chimia 30:107–109.

    CAS  Google Scholar 

  • Schofield RK (1949) Effect of electric charges carried by clay particle. J Soil Sci 1:1–8.

    CAS  Google Scholar 

  • Schwarzenbach RP, Westall J (1981) Transport of non polar organic compounds from surface water to groundwater. Laboratory sorption studies. Environ Sci Technol 15:1360–1367.

    Article  CAS  Google Scholar 

  • Scwarzenbach RP, Westall J (1985) Sorption of hydrophobic trace organic compounds in groundwater system. Wat Sci Tech 17:39–55.

    Google Scholar 

  • Sposito G (1984) The surface chemistry of soils. Oxford University Press, New York.

    Google Scholar 

  • Stumm W, Morgan JJ (1981) Aquatic Chemistry. 2nd edn. John Wiley & Sons, Inc, New York London Sidney Toronto.

    Google Scholar 

  • Thomas JM (1961) The existence of endothermic adsorption. J Chem Ed 38:138–139.

    Article  Google Scholar 

  • Thurman EM (1985) Organic geochemistry of natural waters. Nijhoff M, Junk W, Dordrecht Boston Lancaster.

    Book  Google Scholar 

  • Tipping H, Cooke JP (1981) Adsorption of organic matter by alumina. Geochim Cosmoch Acta 46:75–80.

    Article  Google Scholar 

  • Weast RC, Lide DR, Astle MJ, Beyer WH (eds) (1990) Handbook of Chemistry and Physics, 70th edn. CRC Press, Inc, Boca Raton, Florida.

    Google Scholar 

  • Weber WJ Jr, Voice TC, Pirbazari M, Hunt GE, Ulanoff DM (1983) Sorption of hydrophobic compounds by sediments, soils and suspended solids. II. Sorbent evaluation studies. Water Res 17:1443:1452.

    Google Scholar 

  • Weber WJ Jr, McGinley PM, Katz LE (1991) Sorption phenomena in subsurface systems: concept, models and effect on contaminant fate and transport. Wat Res 25:499–528.

    Article  CAS  Google Scholar 

  • Westall JC (1987) Adsorption mechanisms in aquatic surface chemistry. In: Stumm W (ed) Aquatic surface chemistry. 1st edn. John Wiley & Sons, Inc, New York London Sidney Toronto, p 3.

    Google Scholar 

  • Zettlemoyer AC, Micale FJ (1971) Solution adsorption thermodynamics for organics on surfaces. In: Faust SD, Hunter JV (eds) Organic compounds in aquatic environments. Marcel Dekker, Inc, New York, p 165.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Lopez, A., Petruzzelli, D. (1993). Interactions of Toxic Organics with Subsoils Components. In: Petruzzelli, D., Helfferich, F.G. (eds) Migration and Fate of Pollutants in Soils and Subsoils. NATO ASI Series, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77862-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77862-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77864-3

  • Online ISBN: 978-3-642-77862-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics