Skip to main content

Antitumorale Wirkungen immuntherapeutischer Agenzien in vitro und in vivo in einem syngenen Tiermodell des Nierenzellkarzinoms

  • Conference paper
  • 22 Accesses

Zusammenfassung

Gegenwärtig gibt es keine wirksamen Standardbehandlungsmethoden des Nierenzellkarzinoms (NZK). Die systemische Behandlung mittels Hormonoder Chemotherapie hat die Prognose von Patienten mit disseminierter Erkrankung nicht verbessert (Harris 1983; Yagoda 1989). Die objektiven Ansprechraten bei Anwendung der Hormontherapie schwanken zwischen 0 und 10%, wobei fast alle Reaktionen nur partiell und von kurzer Dauer sind. Zahlreiche chemotherapeutische Agenzien wurden in klinischen Versuchen als Mono- und Kombinationstherapie verabreicht, wobei die Gesamt ansprechrate bei 2120 Patienten 8,77% betrug. Vinblastin stellt bei Monotherapie das wirksamste Agens dar, doch Bemühungen zur Verbesserung der Ansprechrate durch Hinzufügung anderer chemotherapeutischer Agenzien waren nicht erfolgreich.

Übersetzung aus dem Engl, von Belinde Junkers.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   54.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Alexander P (1977) Back to the drawing board. The need for more realistic model systems for immunotherapy. Cancer 40: 467–470

    Article  PubMed  CAS  Google Scholar 

  • Bailey MJ, Jones AJ, Shorthouse AJ, Raghaven D, Selby P, Gibbs J, Peckham MJ (1984) Limitations of the human tumour xenograft system in individual patient drug sensitivity testing. Br J Cancer 50: 721–724

    Article  PubMed  CAS  Google Scholar 

  • Bartsch HH, Pfizenmaier K, Schroeder M, Nagel GA (1989) Intralesional application of recombinant human tumor necrosis factor alpha induces local tumor regression in patients with advanced malignancies. Eur J Cancer Clin Oncol 25: 287–291

    Article  PubMed  CAS  Google Scholar 

  • Beniers AJMC, van Moorselaar RJA, Peelen WP, Debruyne FMJ, Schalken JA (1991) Differential sensitivity of renal cell carcinoma xenografts towards therapy with interfe-ron-alpha, interferon-gamma and tumor necrosis factor and their combinations. Urol Res 19: 91–98

    Article  PubMed  CAS  Google Scholar 

  • Borden EC, Sondel PM (1990) Lymphokines and cytokines as cancer treatment. Cancer 65: 800–814

    Article  PubMed  CAS  Google Scholar 

  • Coffey DS, Isaacs JT, Weisman RM (1979) Animal models for study of prostatic cancer. In: Murphy GP (ed) Prostatic cancer. PSG Publishing Company, Littleton, Mass, pp 89–109

    Google Scholar 

  • Embleton MJ, Middle JG (1981) Immune responses to naturally occurring rat sarcomas. Br J Cancer 43: 44–52

    Article  PubMed  CAS  Google Scholar 

  • Feng G-S, Gray PW, Shepard M, Taylor MW (1988) Antiproliferative activity of a hybrid protein between interferon-gamma and tumor necrosis factor-beta. Science 241: 1501–1503

    Article  PubMed  CAS  Google Scholar 

  • Foley EJ (1953 a) Attempts to induce immunity against mammary adenocarcinoma in inbred mice. Cancer Res 13: 578–590

    PubMed  CAS  Google Scholar 

  • Foley EJ (1953 b) Antigenic properties of methylcholanthrene-induced tumors in mice of the strain of origin. Cancer Res 13: 835–837

    PubMed  CAS  Google Scholar 

  • Foon KA (1989) Biological response modifiers: the new immunotherapy. Cancer Res 49: 1621–1639

    PubMed  CAS  Google Scholar 

  • Gonzalez A, Oberley TD, Li J J (1989) Morphological and immunohistochemical studies of the estrogen-induced Syrian hamster renal tumor: probable cell of origin. Cancer Res 49: 1020–1028

    PubMed  CAS  Google Scholar 

  • Hamilton JM (1975) Renal carcinogenesis. Adv Cancer Res 22: 1–56

    Article  PubMed  CAS  Google Scholar 

  • Harris DT (1983) Hormonal therapy and chemotherapy of renal-cell carcinoma. Sem Oncol 10: 422–430

    CAS  Google Scholar 

  • Heicappell R, Ackermann R (1990) Rationale for immunotherapy of renal cell carcinoma. Urol Res 18: 357–372

    Article  PubMed  CAS  Google Scholar 

  • Hewitt HB (1978) The choice of animal tumors for experimental studies of cancer therapy. Adv Cancer Res 27: 149–200

    Article  PubMed  CAS  Google Scholar 

  • Hewitt HB, Blake ER (1978) Stability of transplanted murine tumour systems after storage of cells at -196°C for up to 13 years. Br J Cancer 37: 718–722

    Article  PubMed  CAS  Google Scholar 

  • Hewitt HB, Blake ER, Walder AS (1976) A critique of the evidence for active host defence against cancer, based on personal studies of 27 murine tumours of spontaneous origin. Br J Cancer 33: 241–259

    Article  PubMed  CAS  Google Scholar 

  • Horoszewicz JS, Murphy GP (1989) An assessment of the current use of human interferons in therapy of urological cancers. J Urol 142: 1173–1180

    PubMed  CAS  Google Scholar 

  • Isaacson JH, Cattanach BM (1962) Report. Mouse News Letter 27: 312

    Google Scholar 

  • Kallman RF, Denekamp J, Hill RP, Kummermehr J (1985) The use of rodent tumors in experimental cancer therapy. Conclusions and recommendations from an international workshop. Cancer Res 45: 6541–6545

    PubMed  CAS  Google Scholar 

  • Karthaus HFM, Feitz WFJ, Meijden APM vd et al. (1987) Multidisciplinary evaluation of rat renal cell carcinoma. In Vivo 1: 335–342

    PubMed  CAS  Google Scholar 

  • Kavoussi LR, Ruesing RA, Hudson MA, Catalona WJ, Ratliff TL (1989) Effect of tumor necrosis factor and interferon gamma on human renal carcinoma cell line growth. J Urol 142: 875–878

    PubMed  CAS  Google Scholar 

  • Mavligit GM, Zukiwski A A, Charnsangavej C, Carrasco CH, Wallace S, Gutterman JU (1992) Regional biologic therapy. Hepatic arterial infusion of recombinant human tumor necrosis factor in patients with liver metastases. Cancer 69: 557–561

    Article  PubMed  CAS  Google Scholar 

  • Middle JG, Embleton M J (1981) Naturally arising tumors of the inbred WAB/Not rat strain. II Immunogenicity of transplanted tumors. J Natl Cancer Inst 67: 637–643

    PubMed  CAS  Google Scholar 

  • van Moorselaar RJA, Schwachöfer JHM, Crooijmans RPMA, van Stratum P, Debruyne FMJ, Schalken JA (1990 a) Combined effects of tumor necrosis factor alpha and radiation in the treatment of renal cell carcinoma grown as spheroids. Anticancer Res 10: 1769–1774

    PubMed  Google Scholar 

  • van Moorselaar RJA, Beniers AJMC, Hendriks BTh, van der Meide PH, Schellekens H, Debruyne FMJ, Schalken JA (1990 b) In vivo antiproliferative effects of gamma-interferon and tumor necrosis factor alpha in a rat renal cell carcinoma model system. J Urol 143: 1247–1251

    PubMed  Google Scholar 

  • van Moorselaar RJA, Schalken JA, Oosterhof GON, Debruyne FMJ (1991) Use of animal models in diagnosis and treatment of renal cell carcinoma. An overview. World J Urol 9: 192–197

    Google Scholar 

  • Mueller-Klieser W (1987) Multicellular spheroids. A review on cellular aggregates in cancer research. J Cancer Res Clin Oncol 113: 101–122

    Article  PubMed  CAS  Google Scholar 

  • Murphy GP, Hrushesky WJ (1973) A murine renal cell carcinoma. J Natl Cancer Inst 50: 1013–1025

    PubMed  CAS  Google Scholar 

  • Murphy GP, Johnston GS, Melby EC (1967) Comparative aspects of experimentally induced and spontaneously observed renal tumors. J Urol 97: 965–972

    PubMed  CAS  Google Scholar 

  • Raghavan D, Debruyne F, Herr H, Jocham D, Kakizoe T, Okajima E, Sandberg A, Tannock I (1986) Experimental models of bladder cancer: a critical review. Prog Clin Biol Res 221: 171–208

    PubMed  CAS  Google Scholar 

  • Rygaard J, Povlsen CO (1969) Heterotransplantation of a human malignant tumor in ‘nude’ mice. Acta Pathol Microbiol Scand 77: 758–760

    Article  PubMed  CAS  Google Scholar 

  • Scott OCA (1991) Tumor transplantation and tumor immunity: a personal view. Cancer Res 51: 757–763

    PubMed  CAS  Google Scholar 

  • Sufrin G (1980) Spontaneous, hormonal, and chemically induced animal models of renal adenocarcinoma. In: Sufrin G, Beckley SA (eds) Renal adenocarcinoma. UICC technical report series, vol 49, Geneva, pp 2–27

    Google Scholar 

  • Sutherland RM (1988) Cell and environment interactions in tumor microregions: the multicell spheroid model. Science 240: 177–184

    Article  PubMed  CAS  Google Scholar 

  • deVere White R, Olsson RA (1980) Renal adenocarcinoma in the rat. A new tumor model. Invest Urol 17: 405–412

    Google Scholar 

  • Winograd B, Boyen E, Lobbezoo MW, Pinedo HM (1987) Human tumor xenografts in the nude mouse and their value as test models in anticancer drug development (review). In Vivo 1: 1–14

    PubMed  CAS  Google Scholar 

  • Yagoda A (1989) Chemotherapy of renal cell carcinoma: 1983–1989. Sem Urol 7:199–206

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

van Moorselaar, R.J.A., Debruyne, F.M.J., Schalken, J.A. (1993). Antitumorale Wirkungen immuntherapeutischer Agenzien in vitro und in vivo in einem syngenen Tiermodell des Nierenzellkarzinoms. In: Rübben, H., Goepel, M., Schmitz-Dräger, B.J. (eds) Immuntherapie in der Uroonkologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77830-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77830-8_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77831-5

  • Online ISBN: 978-3-642-77830-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics