Skip to main content

Localization and Colocalization of Gastrointestinal Peptides

  • Chapter
Gastrointestinal Regulatory Peptides

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 106))

Abstract

The digestive tract is the richest source of biologically active peptides outside the brain. The number of identified gut peptides has increased dramatically over the last 2 decades. Methodological advances have made this rapid development possible. Many neurohormonal peptides have C-terminal α-amide groups and the development of a screening method for peptides with amidated C-terminal residues has enabled the isolation of several neurohormonal peptides, such as peptide histidine isoleucine amide (PHI), peptide YY (PYY), neuropeptide Y (NPY) and galanin, all of which are present in the gut (Tatemoto and Mutt 1978, 1980, 1981; Tatemoto et al. 1982, 1983). In addition, techniques of molecular biology have been used to identify the precursors of a great number of both known and previously unknown gut peptides (see e.g., Lund et al. 1982; Itoh et al. 1983; Rosenfeld et al. 1983). Many of the precursors of known peptides were found to contain, besides the known peptide, cryptic segments some of which seem to be of biological significance as messenger molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ali-Rachedi A, Varndell IM, Adrian TE, Gapp DA, van Noorden S, Bloom SR, Polak JM (1984) Peptide YY (PYY) immunoreactivity is co-stored with glucagon-related immunoreactants in endocrine cells of the gut and pancreas. Histochemistry 80:487–489

    PubMed  CAS  Google Scholar 

  • Alumets J, Håkanson R, Sundler F, Chang KJ (1978) Leu-enkephalin-like material in nerves and enterochromaffin cells in the gut. Histochemistry 56:187–196

    PubMed  CAS  Google Scholar 

  • Alumets J, Ekelund M, El Munshid HA, Håkanson R, Lorén I, Sundler F (1979) Topography of somatostatin cells in the stomach of the rat; possible functional significance. Cell Tissue Res 202:177–188

    PubMed  CAS  Google Scholar 

  • Amara SG, Jonas V, Rosenfeld MG, Ong ES, Evans RM (1982) Alternative RNA processing in calcitonin gene expression generates mRNAs encoding different polypeptide products. Nature 298:240–244

    PubMed  CAS  Google Scholar 

  • Amara S, Arriza JL, Leff SE, Swanson LW, Evans RM, Rosenfeld MG (1985) Expression in brain of a messenger RNA encoding a novel neuropeptide homologous to calcitonin gene-related peptide. Science 229:1094–1097

    PubMed  CAS  Google Scholar 

  • Ballestra J, Cariei F, Bishop AE, Steel JH, Gibson SJ, Fehey M, Hennessey R, Domin J, Bloom SR, Polak JM (1988) Occurrence and developmental pattern of neuromedin U-immunoreactive nerves in the gastrointestinal tract and brain of the rat. Neuroscience 25:797–816

    Google Scholar 

  • Bishop AE, Polak JM, Bauer FE, Christofides ND, Cariei F, Bloom SR (1986) Occurrence and distribution of a newly discovered peptide, galanin, in the mammalian enteric nervous system. Gut 27:849–857

    PubMed  CAS  Google Scholar 

  • Bjartell A, Ekman R, Hedenbro J, Sjölund K, Sundler F (1989) Delta sleep-inducing peptide (DSIP)-like immunoreactivity in gut: coexistence with known peptide hormones. Peptides 10:163–170

    PubMed  CAS  Google Scholar 

  • Børglum-Jensen T, Fahrenkrug J, Sundler F (1991) Immunocytochemical localisation of pancreastatin and chromogranin A in porcine neuroendocrine tissues. Regul Pept 36:283–298

    Google Scholar 

  • Böttcher G, Sjölund K, Ekblad E, Håkanson R, Schwartz TW, Sundler F (1984) Coexistence of peptide YY and glicentin immunoreactivity in endocrine cells of the gut. Regul Pept 8:261–266

    PubMed  Google Scholar 

  • Böttcher G, Alumets J, Håkanson R, Sundler F (1986) Co-existence of glicentin and peptide YY in colorectal L-cells in cat and man. An electron microscopic study. Regul Pept 13:283–291

    PubMed  Google Scholar 

  • Brand SJ, Stone D (1988) Reciprocal regulation of antral gastrin and somatostatin gene expression in omeprazole-induced achlorhydria. J Clin Invest 82:1057–1066

    Google Scholar 

  • Brazeau P, Vale W, Burgus R, Ling N, Butcher M, Rivier J, Guillemin R (1973) Hypothalamic polypeptide that inhibits the secretion of immunoreactive pituitary growth hormone. Science 179:77–79

    PubMed  CAS  Google Scholar 

  • Brownstein MJ (1985) Peptide processing: an overview. In: Håkanson R, Thorell J (eds) Biogenetics of neurohormonal peptides. Academic Press, London, pp 105–112

    Google Scholar 

  • Bryant MG, Bloom SR, Polak JM, Albuquerque RH, Modlin I, Pearse AGE (1976) Possible dual role for vasoactive intestinal peptide as gastrointestinal hormone and neurotransmitter substance. Lancet 1:991–993

    PubMed  CAS  Google Scholar 

  • Capella C, Finzi G, Cornaggia M, Usellini L, Luinetti O, Buffa R, Solcia E (1991) Ultrastructural typing of gastric endocrine cells. In: Håkanson R, Sundler F (eds) The stomach as an endocrine organ. Elsevier, Amsterdam, pp 27–51 (Fernström symposium, no 15)

    Google Scholar 

  • Chang MM, Leeman SE, Niall HD (1971) Amino-acid sequence of substance P. Nature [New Biol] 232:86–87

    CAS  Google Scholar 

  • Comb M, Seeburg PH, Adelman J, Eiden L, Herbert E (1982) Primary structure of the human Met- and Leu-enkephalin precursor and its mRNA. Nature 295:663–666

    PubMed  CAS  Google Scholar 

  • Curry WJ, Johnston CF, Shaw C, Buchanan KD (1990) Distribution and partial characterization of immunoreactivity to the putative C-terminus of rat pan-creastatin. Regul Pept 30:207–220

    PubMed  CAS  Google Scholar 

  • Daniel EE, Furness JB, Costa M, Beibeck L (1987) The projections of chemically identified nerve fibres in canine ileum. Cell Tissue Res 247:377–384

    PubMed  CAS  Google Scholar 

  • Dayal Y (1991) Neuroendocrine cells of the gastrointestinal tract: introduction and historical perspective. In: Dayal Y (ed) Endocrine pathology of the gut and pancreas. CRC, Boca Raton, pp 1–31

    Google Scholar 

  • Deschenes RJ, Lorenz LJ, Haun RS, Roos BA, Collier KJ, Dixon JE (1984) Cloning and sequence analysis of a cDNA encoding rat pre-procholecystokinin. Proc Natl Acad Sci USA 81:726–730

    PubMed  CAS  Google Scholar 

  • Dimaline R (1988) Post-translational modification of peptide messengers in the gut. Q J Exp Physiol 73:873–902

    PubMed  CAS  Google Scholar 

  • Dockray GJ, Vaillant C, Walsh JH (1979) The neuronal origin of bombesin-like immunoreactivity in the rat gastrointestinal tract. Neuroscience 4:1561–1568

    PubMed  CAS  Google Scholar 

  • Dockray GJ, Hamer C, Evans D, Karro A, Dimaline R (1991a) The secretory kinetics of the G cell in omeprazole-treated rats. Gastroenterology 100:1187–1194

    PubMed  CAS  Google Scholar 

  • Dockray GJ, Varro A, Watkinson A, Dimaline R (1991b) Selective processing of peptides in gastric endocrine cells. In: Håkanson R, Sundler F (eds) The stomach as an endocrine organ. Elsevier, Amsterdam, pp 197–210 (Fernström symposium, no 15)

    Google Scholar 

  • Domin J, Ghatei MA, Chohan P, Bloom SR (1987) Neuromedin U — a study of its distribution in the rat. Peptides 8:779–784

    PubMed  CAS  Google Scholar 

  • Eipper BA, Mains R, Glembotski CC (1985) Peptide α-amidation: cellular and enzymatic studies. In: Håkanson R, Thorell J (eds) Biogenetics of neurohormonal peptides. Academic Press, London, pp 189–209

    Google Scholar 

  • Eipper BA, Mains RE, Herbert E (1986) Peptides in the nervous system. Trends Neurosci 9:463–468

    CAS  Google Scholar 

  • Eissele R, Rosskopf B, Koop H, Adler G, Arnold R (1991) Proliferation of endocrine cells in the rat stomach caused by drug-induced achlorhydria. Gastroenterology 101:70–76

    PubMed  CAS  Google Scholar 

  • Ekblad E, Ekman R, Håkanson R, Sundler F (1984a) GRP neurones in the rat small intestine issue long anal projections. Regul Pept 9:279–287

    PubMed  CAS  Google Scholar 

  • Ekblad E, Håkanson R, Sundler F (1984b) VIP and PHI coexist with an NPY-like peptide in intramural neurones of the small intestine. Regul Pept 10:47–58

    PubMed  CAS  Google Scholar 

  • Ekblad E, Ekelund M, Graffner H, Håkanson R, Sundler F (1985a) Peptide-containing nerve fibers in the stomach wall of rat and mouse. Gastroenterology 89:73–85

    PubMed  CAS  Google Scholar 

  • Ekblad E, Håkanson R, Rökaeus Å, Sundler F (1985b) Galanin nerve fibers in the rat gut: distribution, origin and projections. Neuroscience 16:355–363

    PubMed  CAS  Google Scholar 

  • Ekblad E, Winther C, Ekman R, Håkanson R, Sundler F (1987) Projections of peptide-containing neurons in rat small intestine. Neuroscience 20:169–188

    PubMed  CAS  Google Scholar 

  • Ekblad E, Ekman R, Håkanson R, Sundler F (1988) Projections of peptide-containing neurons in rat colon. Neuroscience 27:655–674

    PubMed  CAS  Google Scholar 

  • Ekblad E, Arnbjörnsson E, Ekman R, Håkanson R, Sundler F (1989a) Neuropeptides in the human appendix: distribution and motor effects. Dig Dis Sci 34:1217–1230

    PubMed  CAS  Google Scholar 

  • Ekblad E, Håkanson R, Sundler F (1989b) Projections of enteric peptide-containing neurons in the rat. In: Singer MV, Goebell H (eds) Nerves and the gastrointestinal tract. Kluwer, Dordrecht, pp 47–56 (Falk symposium, no 50)

    Google Scholar 

  • Ekblad E, Håkanson R, Sundler F (1991a) Innervation of the stomach of rat and man with special reference to the endocrine cells. In: Håkanson R, Sundler F (eds) The stomach as an endocrine organ. Elsevier, Amsterdam, pp 79–95 (Fernström symposium, no 15)

    Google Scholar 

  • Ekblad E, Håkanson R, Sundler F (1991b) Microanatomy and chemical coding of peptide-containing neurons in the digestive tract. In: Daniel EE (ed) Neuropeptide function in the gastrointestinal tract. CRC, Boca Raton, pp 131–191

    Google Scholar 

  • Elde R, Hökfelt T, Johansson O, Terenius L (1976) Immunohistochemical studies using antibodies to leucine enkephalin: initial observations on the nervous system of the rat. Neuroscience 1:349–351

    PubMed  CAS  Google Scholar 

  • Ericson LE, Sundler F (1984) Thyroid parafollicular cells. Ultrastructural and functional correlation. In: Motta PM (ed) Ultrastructure of endocrine cells and tissues. Nijhoff, Boston, pp 276–285

    Google Scholar 

  • Facer P, Bishop AE, Lloyd RV, Wilson BS, Hennesy RJ, Polak JM (1985) Chromogranin: a newly recognized marker for endocrine cells of the human gastrointestinal tract. Gastoenterology 89:1366–1373

    CAS  Google Scholar 

  • Furness JB, Costa M (1987) The enteric nervous system. Churchill Livingstone, London

    Google Scholar 

  • Furness JB, Costa M, Emson PC, Håkanson R, Moghimzadeh E, Sundler F, Taylor IL, Chance RE (1983) Distribution, pathways and reactions to drug treatment of nerves with neuropeptide Y- and pancreatic polypeptide-like immunoreactivity in the guinea-pig digestive tract. Cell Tissue Res 234:71–92

    PubMed  CAS  Google Scholar 

  • Furness JB, Costa M, Rökaeus Å, McDonald TJ, Brooks B (1987) Galanin-immunoreactive neurons in the guinea-pig small intestine: their projections and relationships to other enteric neurons. Cell Tissue Res 250:607–615

    PubMed  CAS  Google Scholar 

  • Furness JB, Morris JL, Gibbins IL, Costa M (1989a) Chemical coding of neurons and plurichemical transmission. Annu Rev Pharmacol Toxicol 29:289–306

    PubMed  CAS  Google Scholar 

  • Furness JB, Pompolo S, Murphy R, Giraud A (1989b) Projections of neurons with neuromedin U-like immunoreactivity in the small intestine of the guinea pig. Cell Tissue Res 257:415–422

    PubMed  CAS  Google Scholar 

  • Gibbins IL, Furness JB, Costa M, McIntyre I, Hillyard SJ, Girgis S (1985) Co-localization of calcitonin gene-related peptide-like immunoreactivity with substance P in cutaneous, vascular and visceral sensory neurons of guinea-pigs. Neurosci Lett 57:128–130

    Google Scholar 

  • Goldstein A, Fischli W, Lowney LI, Hunkapiller M, Hood L (1981) Porcine pituitary dynorphin: complete amino acid sequence of the biologically active heptadecapeptide. Proc Natl Acad Sci USA 78:7219–7223

    PubMed  CAS  Google Scholar 

  • Gonda T, Daniel EE, McDonald TJ, Fox JET, Brooks BD, Oki M (1989) Distribution and function of enteric GAL-IR nerves in dogs: comparison with VIP Am J Physiol 256:G884–G896

    PubMed  CAS  Google Scholar 

  • Gubler U, Chua AO, Hoffman BJ, Collier KJ, Eng J (1984) Cloned cDNA to cholecystokinin mRNA predicts an identical preprocholecystokinin in pig brain and gut. Proc Natl Acad Sci USA 81:4307–4310

    PubMed  CAS  Google Scholar 

  • Gulbenkian S, Merighi A, Wharton J, Varndell IM, Polak JM (1986) Ultrastructural evidence for the coexistence of calcitonin gene-related peptide and substance P in secretory vesicles of peripheral nerves in the guinea pig. J Neurocytol 15:535–542

    PubMed  CAS  Google Scholar 

  • Håkanson R, Sundler F (1983) The design of the neuroendocrine system: a unifying concept and its consequences. Trends Pharmacol Sci 4:41–44

    Google Scholar 

  • Håkanson R, Sundler F (1986) The role of peptide messengers in the neuroendocrine system: hormones, neurotransmitters, or neuromodulators. In: Schou J, Greisler A, Norn S (eds) Drug receptors and dynamic processes in cells. Munksgaard, Copenhagen, pp 62–77 (Alfred Benzon symposium, no 22)

    Google Scholar 

  • Håkanson R, Sundler F (1991) The gastrin concept: the proposed mechanism behind the development of drug-induced gastric carcinoids. In: Håkanson R, Sundler F (eds) The stomach as an endocrine organ. Elsevier, Amsterdam, pp 449–460 (Fernström symposium, no 15)

    Google Scholar 

  • Håkanson R, Alumets J, Rehfeld JF, Ekelund M, Sundler F (1982) The life cycle of the gastrin granule. Cell Tissue Res 222:479–491

    PubMed  Google Scholar 

  • Håkanson R, Böttcher G, Ekblad E, Panula P, Simonsson M, Dohlsten M, Hallberg T, Sundler F (1986) Histamine in endocrine cells in the stomach. A survey of several species using a panel of histamine antibodies. Histochemistry 86:5–17

    PubMed  Google Scholar 

  • Håkanson R, Böttcher G, Ekblad E, Grunditz T, Sundler F (1990) Functional implications of messenger coexpression in neurons and endocrine cells. In: Schwartz TW, Hilsted LM, Rehfeld JF (eds) Neuropeptides and their receptors. Munksgaard, Copenhagen, pp 211–232 (Alfred Benzon symposium, no 29)

    Google Scholar 

  • Halban PA (1991) Structural domains and molecular lifestyles of insulin and its precursors in the pancreatic beta cell. Diabetologia 34:767–778

    PubMed  CAS  Google Scholar 

  • Heitz P, Polak JM, Timson CM, Pearse AGE (1976) Enterochromaffin cells as the source of gastrointestinal substance P. Histochemistry 49:343–347

    PubMed  CAS  Google Scholar 

  • Hökfelt T, Johansson O, Efendic S, Luft R, Arimura A. (1975) Are there somatostatin containing nerves in the rat gut? Immunohistochemical evidence for a new type of peripheral nerve. Experientia 31:852–854

    PubMed  Google Scholar 

  • Hughes J, Smith TW, Kosterlitz HW, Fothergill LA, Morgan BA, Morris HR (1975) Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 258:577–579

    PubMed  CAS  Google Scholar 

  • Itoh N, Obata K, Yanaihara N, Okamoto H (1983) Human prepr o vaso active intestinal polypeptide contains a novel PHI-27-like peptide, PHM-27. Nature 304:547–549

    PubMed  CAS  Google Scholar 

  • Johnson KH, O’Brien TD, Hayden DW, Jordan K, Ghobrial HKG, Mahoney WC, Westermark P (1988) Immunolocalization of islet amyloid polypeptide (IAPP) in pancreatic beta cells by means of peroxidase-antiperoxidase (PAP) and protein A-gold techniques. Am J Pathol 130:1–8

    PubMed  CAS  Google Scholar 

  • Kakidani H, Furutani Y, Takahashi H, Noda M, Morimoto Y, Hirose T, Asai M, Inayama S, Nakanishi S, Numa S (1982) Cloning and sequence analysis of cDNA for porcine beta neoendorphin/dynorphin precursor. Nature 298:245–249

    PubMed  CAS  Google Scholar 

  • Kimura C, Ohkubo S, Ogi K, Hosoya M, Itoh Y, Onda H, Miyata A, Jiang L, Dahl RR, Stibbs HH, Arimura A, Fujino M (1990) A novel peptide which stimulates adenylate cyclase: molecular cloning and characterization of the ovine and human cDNAs. Biochem Biophys Res Commun 166:81–89

    PubMed  CAS  Google Scholar 

  • Koop H, Willemer S, Steinback F, Eissele R, Tuch K, Arnold R (1987) Influence of chronic drug-induced achlorhydria by substituted benzimidazoles on the endocrine stomach of rats. Gastroenterology 92:406–413

    PubMed  CAS  Google Scholar 

  • Krause JE, Chirgwin JM, Carter MS, Xu ZS, Hershey AD (1987) Three rat pre-protachykinin mRNAs encode the neuropeptides substance P and neurokinin A. Proc Natl Acad Sci USA 84:881–885

    PubMed  CAS  Google Scholar 

  • Kuwahara A, Mikami S, Yanaihara N (1985) Coexistence of immunoreactive gastrin-releasing peptide and substance P in the myenteric plexus of rat stomach. Biomed Res 6:443–446

    CAS  Google Scholar 

  • Lamberts R, Schmidt WE, Creutzfeldt W (1990) Light and electron microscopic immunocytochemical localization of pancreastatin-like immunoreactivity in porcine tissues. Histochemistry 93:369–380

    PubMed  CAS  Google Scholar 

  • Larsson L-I (1978) ACTH-like immunoreactivity in the gastrin cell. Independent changes in gastrin and ACTH-like immunoreactivity during ontogeny. Histochemistry 56:245–251

    PubMed  CAS  Google Scholar 

  • Larsson L-I, Rehfeld JF (1979) Localization and molecular heterogeneity of cholecystokinin in the central and peripheral nervous system. Brain Res 165: 201–218

    PubMed  CAS  Google Scholar 

  • Larsson L-I, Fahrenkrug J, Schaffalitzky de Muckadell O, Sundler F, Håkanson R, Reheld JF (1976) Localization of vasoactive intestinal polypeptide (VIP) to central and peripheral neurones. Proc Natl Acad Sci USA 73:3197–3200

    PubMed  CAS  Google Scholar 

  • Larsson L-I, Golterman N, de Magistris L, Rehfeld JF, Schwartz TW (1989) Somatostatin cell processes as pathways for paracrine secretion. Science 205:1393–1395

    Google Scholar 

  • Larsson LT, Sundler F (1990) Neuronal markers in Hirschsprung’s disease with special reference to neuropeptides. Acta Histochem (Jena) Suppl 38:115–125

    CAS  Google Scholar 

  • Lund PK, Goodman RH, Dee PC, Habener JF (1982) Pancreatic preproglucagon cDNA contains two glucagon-related coding sequences arranged in tandem. Proc Natl Sci USA 79:345–349

    CAS  Google Scholar 

  • Lundberg JM, Terenius L, Hökfelt T, Martling CR, Tatemoto K, Mutt V, Polak J, Bloom S, Goldstein M (1982) Neuropeptide Y (NPY) like immunoreactivity in peripheral noradrenergic neurons and effects of NPY on sympathetic function. Acta Physiol Scand 116:477–480

    PubMed  CAS  Google Scholar 

  • Lundberg JM, Hökfelt T (1986) Multiple co-existence of peptides and classical transmitters in peripheral autonomic and sensory neurones — functional and pharmacological implications. Prog Brain Res 68:241–262

    PubMed  CAS  Google Scholar 

  • Mattsson H, Sundler F, Carlsson K, Håkanson R (1991) Antral gastrin and somatostatin cells during long-term hypergastrinemia (Abstr). Gastroenterology 100:A655

    Google Scholar 

  • McDonald TJ, Jörnvall H, Nilsson G, Vagne M, Ghatei M, Bloom SR, Mutt V (1979) Characterization of a gastrin releasing peptide from porcine non-antral gastric tissue. Biochem Biophys Res Commun 90:227–233

    PubMed  CAS  Google Scholar 

  • Melander T, Hökfelt T, Rökaeus Å, Fahrenkrug J, Tatemoto K, Mutt V (1985) Distribution of galanin-like immunoreactivity in the gastrointestinal tract of several mammalian species. Cell Tissue Res 239:253–270

    PubMed  CAS  Google Scholar 

  • Merighi A, Polak JM, Gibson SJ, Gulbenkian S, Valentino KL, Peirone SM (1988) Ultrastructural studies on calcitonin gene related peptide-, tachykinin- and somatostatin- immunoreactive neurones in rat dorsal root ganglia: evidence for the colocalization of different peptides in single secretory granules. Cell Tissue Res 254:101–109

    PubMed  CAS  Google Scholar 

  • Messenger JP, Furness JB (1990) Projections of chemically-specified neurons in the guinea-pig colon. Arch Histol Cytol 53:467–495

    PubMed  CAS  Google Scholar 

  • Minamino N, Kangawa K, Matsuo H (1985) Neuromedin U-8 and U-25; novel uterus stimulating and hypertensive peptides identified in porcine spinal cord. Biochem Biophys Res Commun 130:1078–1085

    PubMed  CAS  Google Scholar 

  • Minth CD, Bloom SR, Polak JM, Dixon JE (1984) Cloning, characterization and DNA sequence of a human cDNA encoding neuropeptide tyrosine. Proc Natl Acad Sci USA 81:4577–4581

    PubMed  CAS  Google Scholar 

  • Miyata A, Arimura A, Dahl R, Minamino N, Uehara A, Jiang L, Culler MD, Coy DH (1989) Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 164:567–574

    PubMed  CAS  Google Scholar 

  • Morris HR, Panico M, Etienne T, Tippins J, Girgis SI, Maclntyre I (1984) Isolation and characterization of human calcitonin gene-related peptide. Nature 308:746–748

    PubMed  CAS  Google Scholar 

  • Mulderry PK, Ghatei MA, Spokes RA, Jones PM, Pierson AM, Hamid QA, Kanse S, Amara SG, Burrin JM, Legon S, Polak JM, Bloom SR (1988) Differential expression of α-CGRP and β-CGRP by primary sensory neurons and enteric autonomic neurons in the rat. Neuroscience 25:195–205

    PubMed  CAS  Google Scholar 

  • Mutt V, Jorpes E (1971) Hormonal polypeptides of upper intestine. Biochem J 125:57P–58P

    PubMed  CAS  Google Scholar 

  • Mutt V, Said SI (1974) Structure of the porcine vasoactive intestinal octacosapeptide: the amino-acid sequence. Use of kallikrein in its determination. Eur J Biochem 42:581–589

    PubMed  CAS  Google Scholar 

  • Nawa H, Hirose T, Takashima H, Inayama S, Nakanishi S (1983) Nucleotide sequences of cloned cDNAs for two types of bovine brain substance P precursors. Nature 306:31–36

    Google Scholar 

  • Nilsson G, Larsson L-I, Håkanson R, Brodin E, Pernow B, Sundler F (1975) Localization of substance P-like immunoreactivity in mouse gut. Histochemistry 43:97–99

    PubMed  CAS  Google Scholar 

  • Noda M, Furutani Y, Takahashi H, Toyosato M, Hirose T, Inayama S, Nakanishi S, Numa S (1982) Cloning and sequence analysis of cDNA for bovine adrenal preproenkephalin. Nature 295:202–208

    PubMed  CAS  Google Scholar 

  • Ondolfo JP, Lehy T, Labeille D, Gres L (1989) Growth pattern of the polypeptide-YY cell population in the upper digestive tract of the rat during the perinatal period and after weaning. Cell Tissue Res 258:569–576

    Google Scholar 

  • Orci L (1986) The insulin cell: its cellular environment and how it processes (pro)insulin. Diabetes Metab Rev 2:71–106

    PubMed  CAS  Google Scholar 

  • Pearse AGE, Polak JM (1975) Immunocytochemical localization of substance P in mammalian intestine. Histochemistry 41:373–375

    PubMed  CAS  Google Scholar 

  • Persson P, Håkanson R (1991) The gastrin-gastrocalcin hypothesis. In: Håkanson R, Sundler F (eds) The stomach as an endocrine organ. Elsevier, Amsterdam, pp 341–350 (Fernström symposium, no 15)

    Google Scholar 

  • Persson P, Håkanson R, Axelson J, Sundler F (1989) Gastrin releases a blood-calcium lowering peptide from the acid-producing part of the stomach. Proc Natl Acad Sci USA 86:2834–2838

    PubMed  CAS  Google Scholar 

  • Polak JM, Bloom SR, Marangos PJ (1984) Neuron specific enolase, a marker for neuroendocrine cells. In: Falkmer S, Håkanson R, Sundler F (eds) Evolution and tumour pathology of the neuroendocrine system. Elsevier, Amsterdam, pp 433–452 (Fernström symposium, no 4)

    Google Scholar 

  • Rindi G, Buffa R, Sessa F, Tortora O, Solcia E (1986) Chromogranin A, B and C immunoreactivities of mammalian endocrine cells. Distribution, distinction from costored hormones/prohormones and relationship with the argyrophil component of secretory granules. Histochemistry 85:19–28

    PubMed  CAS  Google Scholar 

  • Rix EW, Feurle GE, Carraway RE (1986) Colocalization of xenopsin and gastrin immunoreactivity in gastric antral G-cells. Histochemistry 85:135–138

    PubMed  CAS  Google Scholar 

  • Rökaeus Å, Brownstein MJ (1986) Construction of a porcine adrenal medullary cDNA library and nucleotide sequence analysis of two clones encoding a galanin precursor. Proc Natl Acad Sci USA 83:6287–6291

    PubMed  Google Scholar 

  • Rökaeus A, Melander T, Hökfelt T, Lundberg JM, Tatemoto K, Carlquist M, Mutt V (1984) A galanin-like peptide in the central nervous system and intestine of the rat. Neurosci Lett 47:161–166

    PubMed  Google Scholar 

  • Rosa P, Hille A, Lee RWH, Zanini A, de Camilli P, Huttner WB (1985) Seereto-granins I and II: two tyrosine-sulfated secretory proteins common to a variety of cells secreting peptides by the regulated pathway. J Cell Biol 101:1991–2011

    Google Scholar 

  • Rosenfeld MG, Mermod J-J, Amara SG, Swanson LW, Sawchenko PE, Riviera J, Vale WW, Evans RM (1983) Production of a novel neuropeptide encoded by the calcitonin gene via tissue-specific RNA processing. Nature 304:129–135

    PubMed  CAS  Google Scholar 

  • Roth KA, Gordon JI (1990) Spatial differentiation of the intestinal epithelium: analysis of enteroendocrine cells containing serotonin, secretin and substance P in normal and transgenic mice. Proc Natl Acad Sci USA 87:6408–6412

    PubMed  CAS  Google Scholar 

  • Schultzberg M, Hökfelt T, Nilsson G, Terenius L, Rehfeld JF, Brown M, Eide R, Goldstein M, Said S (1980) Distribution of peptide- and catecholamine-containing neurons in the gastrointestinal tract of rat and guinea-pig: immuno-histochemical studies with antisera to substance P, vasoactive intestinal polypeptide, enkephalins, somatostatin, gastrin/cholecystokinin, neurotensin and dopamine β-hydroxylase. Neuroscience 5:689–744

    PubMed  CAS  Google Scholar 

  • Shen L-P, Pictet RL, Rutter WJ (1982) Human somatostatin. I. Sequence of the cDNA. Proc Natl Acad Sci USA 79:4575–4579

    PubMed  CAS  Google Scholar 

  • Sjölund K, Sandén G, Håkanson R, Sundler F (1983) Endocrine cells in human intestine: an immunocytochemical study. Gastroenterology 85:1120–1130

    PubMed  Google Scholar 

  • Solcia E, Capella C, Buffa R, Frigerio B (1976) Histochemical and ultrastructural studies on the argentaffin and argyrophil cells of the gut. In: Coupland RE, Fujita T (eds) Chromaffin, enterochromaffin and related cells. Elsevier, Amsterdam, pp 209–255

    Google Scholar 

  • Solcia E, Capella C, Buffa R, Usellini L, Fiocca R, Sessa F (1987) Endocrine cells of the digestive system. In: Johnson LR (ed) Physiology of the gastointestinal tract, 2nd edn. Raven, New York, pp 111–130

    Google Scholar 

  • Spindel ER, Chin WW, Price J, Rees LH, Besser GM, Habener JF (1984) Cloning and characterization of cDNA’s encoding human gastrin-releasing peptide. Proc Natl Acad Sci USA 81:5699–5703

    PubMed  CAS  Google Scholar 

  • Steenbergh PH, Höppener JWM, Zandberg J, Lips CJM, Jansz HS (1985) A second human calcitonin/CGRP gene. FEBS Lett 183:403–407

    PubMed  CAS  Google Scholar 

  • Sternini C, Reeve JR, Brecha N (1987) Distribution and characterization of calcitonin gene-related peptide immunoreactivity in the digestive system of normal and capsaicin-treated rats. Gastroenterology 93:852–862

    PubMed  CAS  Google Scholar 

  • Su HC, Bishop AE, Power RF, Hamada Y, Polak JM (1987) Dual intrinsic and extrinsic origin of CGRP- and NPY-immunoreactive nerves of rat gut and pancreas. J Neurosci 7:2674–2687

    PubMed  CAS  Google Scholar 

  • Sundler F, Håkanson R (1988) Peptide hormone-producing endocrine/paracrine cells in the gastro-entero-pancreatic region. In: Björklund A, Hökfelt T, Owman C (eds) The peripheral nervous system. Elsevier, Amsterdam, pp 219–295 (Handbook of chemical neuroanatomy, vol. 6)

    Google Scholar 

  • Sundler F, Håkanson R (1991) Gastric endocrine cell typing at the light microscopic level. In: Håkanson R, Sundler F (eds) The stomach as an endocrine organ. Elsevier, Amsterdam, pp 9–26 (Fernström symposium, no 15)

    Google Scholar 

  • Sundler F, Alumets J, Håkanson R (1977) 5-Hydroxytryptamine-containing enterochromaffin cells: storage site of substance P. Acta Physiol Scand Suppl 452:121–123

    PubMed  CAS  Google Scholar 

  • Sundler F, Håkanson R, Lorén I, Lundquist I (1980) Amine storage and function in peptide hormone-producing cells. Invest Cell Pathol 3:87–103

    PubMed  CAS  Google Scholar 

  • Sundler F, Moghimzadeh E, Håkanson R, Ekelund M, Emson PC (1983) Nerve fibers in the gut and pancreas of the rat displaying neuropeptide Y immunoreactivity. Intrinsic and extrinsic origin. Cell Tissue Res 230:487–493

    PubMed  CAS  Google Scholar 

  • Sundler F, Brodin E, Ekblad E, Håkanson R, Uddman R (1985a) Sensory nerve fibers: distribution of substance P, neurokinin A and calcitonin gene-related peptide. In: Håkanson R, Sundler F (eds) Tachykinin antagonists. Elsevier, Amsterdam, pp 3–14 (Fernström symposium, no 6)

    Google Scholar 

  • Sundler F, Ekblad E, Böttcher G, Alumets J, Håkanson R (1985b) Coexistence of peptides in the neuroendocrine system. In: Håkanson R, Thorell J (eds) Biogenetics of neurohormonal peptides. Academic Press, London, pp 213–243

    Google Scholar 

  • Sundler F, Håkanson R, Ekblad E, Uddman R, Wahlestedt C (1986) Neuropeptide Y in the peripheral adrenergic and enteric nervous systems. Int Rev Cytol 102:243–269

    PubMed  CAS  Google Scholar 

  • Sundler F, Bjartell A, Böttcher G, Ekblad E, Håkanson R (1987) Localization of enkephalins and other endogenous opioids in the digestive tract. Gastoenterol Clin Biol 11:14B–26B

    CAS  Google Scholar 

  • Sundler F, Ekblad E, Grunditz T, Håkanson R, Uddman R (1988) Vasoactive intestinal peptide in the peripheral nervous system. Ann NY Acad Sci 527:143–167

    PubMed  CAS  Google Scholar 

  • Sundler F, Böttcher G, Ekblad E, Håkanson R (1989) The neuroendocrine system of the gut. Acta Oncol 28:303–314

    PubMed  CAS  Google Scholar 

  • Sundler F, Ekblad E, Håkanson R (1991a) Occurrence and distribution of substance P- and CGRP-containing nerve fibers in gastric mucosa: species differences. Adv Exp Med Biol 298:29–37

    PubMed  CAS  Google Scholar 

  • Sundler F, Ekblad E, Håkanson R (1991b) The neuroendocrine system of the gut -an update. Acta Oncol 30:419–427

    PubMed  CAS  Google Scholar 

  • Sundler F, Ekelund M, Håkanson R (1991c) Morphological aspects of gastrin cell activation. In: Håkanson R, Sundler F (eds) The stomach as an endocrine organ. Elsevier, Amsterdam, pp 167–178 (Fernström symposium, no 15)

    Google Scholar 

  • Sundler F, Ekblad E, Absood A, Håkanson R, Köves K, Arimura A (1992) Pituitary adenylate cyclase activating peptide: A novel vasoactive intestinal peptide-like neuropeptide in the gut. Neuroscience 46:439–454

    PubMed  CAS  Google Scholar 

  • Tatemoto K (1982) Neuropeptide Y: Complete amino acid sequence of the brain peptide. Proc Natl Acad Sci USA 79:5485–5489

    PubMed  CAS  Google Scholar 

  • Tatemoto K, Mutt V (1978) Chemical determination of polypeptide hormones. Proc Natl Acad Sci USA 75:4115–4119

    PubMed  CAS  Google Scholar 

  • Tatemoto K, Mutt V (1980) Isolation of two novel candidate hormones using a chemical method for finding naturally occurring polypeptides. Nature (Lond) 285:417–418

    CAS  Google Scholar 

  • Tatemoto K, Mutt V (1981) Isolation and characterization of the intestinal peptide porcine PHI (PHI-27), a new member of the glucagon-secretin family. Proc Natl Acad Sci USA 78:6603–6607

    PubMed  CAS  Google Scholar 

  • Tatemoto K, Carlquist M, Mutt V (1982) Neuropeptide Y — a novel brain peptide with structural similarities to peptide YY and pancreatic polypeptide. Nature 296:659–660

    PubMed  CAS  Google Scholar 

  • Tatemoto K, Rökaeus Å, Jörnvall H, McDonald T, Mutt V (1983) Galanin — a novel biologically active peptide from porcine intestine. FEBS Lett 164:124–128

    PubMed  CAS  Google Scholar 

  • Tsuruo Y, Hökfelt T, Visser TJ, Kimmel JR, Brown JC, Verhofstadt A, Walsh J (1988) TRH-like immunoreactivity in endocrine cells and neurons in the gastrointestinal tract of the rat and guinea pig. Cell Tissue Res 253:347–356

    PubMed  CAS  Google Scholar 

  • Uchida T, Kobayashi S, Yanaihara N (1985) Occurrence and projections of three subclasses of met-enkephalin-Arg6-Gly7-Leu8 neurons in the guinea pig duodenum: immunoelectron microscopic study on the co-storage of metenkephalin-Arg6-Gly7-Leu8 with substance P or PHI (1–15). Biomed Res 6:415–422

    CAS  Google Scholar 

  • Vincent SR, Dalsgaard C-J, Schultzberg M, Hökfelt T, Christensson I, Terenius L (1984) Dynorphin-immunoreactive neurons in the autonomie nervous system. Neuroscience 11:973–987

    PubMed  CAS  Google Scholar 

  • Voigt KH, Martin R (1985) Coexistence of unrelated neuropeptides in nerve terminals. In: Håkanson R, Thorell J (eds) Biogenetics of Neurohormonal Peptides. Academic Press, London, pp 245–272

    Google Scholar 

  • Wattchow DA, Furness JB and Costa M (1988) Distribution and coexistence of peptides in nerve fibers of the external muscle of the human gastrointestinal tract. Gastroenterology 95:32–41

    PubMed  CAS  Google Scholar 

  • Weihe E, Hörsch D, Eiden LE, Hartschuh W (1991) Dual presence of chromogranin A-like immunoreactivity in a population of endocrine-like cells and in nerve fibers in the human anal canal. Neurosci Lett 130:190–194

    PubMed  CAS  Google Scholar 

  • Wiedenmann B, Huttner WB (1989) Synaptophysin and chromogranins/secretogranins — widespread constituents of distinct types of neuroendocrine vesicles and new tools in tumor diagnosis. Virchows Arch B Cell Pathol 58:95–121

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sundler, F., Ekblad, E., Håkanson, R. (1993). Localization and Colocalization of Gastrointestinal Peptides. In: Brown, D.R. (eds) Gastrointestinal Regulatory Peptides. Handbook of Experimental Pharmacology, vol 106. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77814-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77814-8_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77816-2

  • Online ISBN: 978-3-642-77814-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics