Histochemical and Immunocytochemical Investigations of the Fetal Extravascular and Vascular Contractile System in the Normal Placenta and During Preeclampsia

  • Renate Graf
  • Hans-Georg Frank
  • Taylan Öney


In the normal human placenta, angiotensin II is generated in the fetoplacental vascular bed and is thought to be important in the local modulation of vascular resistance (Maguire et al. 1988). The angiotensin II-degrading peptidase aminopeptidase A (L-α-aspartyl (L-α-glutamyl)-peptide hydrolase, EC, formerly angiotensinase A, now glutamyl aminopeptidase, EAP) has been separated biochemically and its angiotensinase activity confirmed (Mizutani et al. 1981). Therefore, it may be assumed that in analogy to the kidney renin-angiotensin system, placental angiotensin may also be cleaved by EAP. Histochemically, low activities of this enzyme have been demonstrated in the media of fetal placental blood vessels (Gossrau et al. 1987).


Normal Placenta Terminal Villus Peptide Hydrolase Immunocytochemical Investigation Villous Stroma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Beham A, Denk H, Desoye G (1988) The distribution of intermediate filament proteins, actin and desmoplakins in human placental tissue as revealed by polyclonal and monoclonal antibodies. Placenta 9: 479–492.PubMedCrossRefGoogle Scholar
  2. Dixon W, Webb EC (1979) Enzymes. Longman Group Ltd, London, 3rd ed, pp 126–137.Google Scholar
  3. Feller AC, Schneider H, Schmidt D, Parwaresch MR (1985) Myofibroblasts as a major cellular constituent of villous stroma in human placenta. Placenta 6: 405–415.PubMedCrossRefGoogle Scholar
  4. Frank HG (1990) Interactions of Ala-4-methoxy-2-napthylamine in enzyme-free incubation media. Transact Roy Microsc Soc 1: 581–584.Google Scholar
  5. Glenner GG, McMillan PJ, Folk JE (1962) A mammalian peptidase specific for the hydrolysis of N-terminal α-L-glutamyl and aspartyl residues. Nature 194: 867.PubMedCrossRefGoogle Scholar
  6. Gossrau R, Graf R, Ruhnke M, Hanski C (1987) Proteases in the human full-term placenta. Histochemistry 86: 405–413.PubMedCrossRefGoogle Scholar
  7. Graf R, Frank H-G, Szabó A (1990) Histochemical and kinetic fluorometric investigations with Ala-and Leu-4-methoxy-2-naphthylamide (MNA) and Ala-and Leu-2-naphthylamide (NA) as substrates for proteases in the normal rat placenta and after application of steroid hormones. Transact Roy Microsc Soc 1: 585–588.Google Scholar
  8. Hartmann K, Gossrau R (1983) Zur Eignung von Aminomethylcoumarin-und Naphthylaminsubstraten für mikrochemische Peptidasenmessungen. Acta histochem Suppl 28: 295–301.PubMedGoogle Scholar
  9. Heymann E, Mentlein R (1984) Beeinflußt Dipeptidylpeptidase IV Blutdruck und Gerinnung? Klin Wochenschr 62: 2–10.PubMedCrossRefGoogle Scholar
  10. Krantz KE, Parker JC (1963) Contractile properties of the smooth muscle in the human placenta. Clin Obstet Gynecol 6: 26–38.CrossRefGoogle Scholar
  11. Kaufmann P (1972) Untersuchungen über die Langhanszellen in der menschlichen Plazenta. Z Zellforsch 128: 283–302.PubMedCrossRefGoogle Scholar
  12. Kaufmann P, Stark J (1972) Enzymhistochemische Untersuchungen an reifen menschlichen Plazentazotten. I. Reifungs-und Alterungsvorgänge. Histochemie 29: 65–82.PubMedCrossRefGoogle Scholar
  13. Kugler P (1982) On angiotensin-degrading aminopeptidases in the rat kidney. Adv Anat Embryol Cell Biol 76: 1–86.PubMedCrossRefGoogle Scholar
  14. Lalu K, Lampelo S, Nummelin-Kortelainen M, Vanha-Perttula T (1984) Purification and characterization of aminopeptidase A from the serum of pregnant and non-pregnant women. Biochim Biophys Acta 789: 324–333.PubMedCrossRefGoogle Scholar
  15. Lojda Z, Gossrau R (1980) Study on aminopeptidase A. Histochemistry 67: 267–290.PubMedCrossRefGoogle Scholar
  16. Maguire MH, Howard RB, Hosokawa T, Poisner AM (1988) Effects of some autacoids and humoral agents on human fetoplacental vascular resistance: Candidates for local regulation of fetoplacental blood flow. In: P Kaufmann, RK Miller (eds), Trophoblast Research Vol. 3, Plenum Medical Book Company, New York, London, pp 203–214.Google Scholar
  17. McDonald JK, Barrett AJ (1986) Mammalian Proteases. A Glossary and Bibliography. Exopeptidases, Vol 2, Academic Press, London, Orlando, San Diego.Google Scholar
  18. Mizutani S, Okano K, Hasegawa E, Sakura H, Yamada M (1981) Aminopeptidase A in human placenta. Biochim Biophys Acta 678: 168–170.Google Scholar
  19. Nachlas MM, Monis B, Rosenblatt DH, Seligman AM (1960) Improvement in the histochemical localization of leucine aminopeptidase with a new substrate, L-leueyl-4-methoxy-2-naph-thylamide. J Biophys Biochem Cytol 7: 261–264.PubMedCrossRefGoogle Scholar
  20. Schiebler TH, Kaufmann P (1981) Reife Plazenta. In: V Becker, TH Schiebler, F Kubli (eds), Die Plazenta des Menschen. Thieme, Stuttgart, New York, pp 51–100.Google Scholar
  21. Schmidt D, Feller AC, Parwaresch MR (1986) Villous myofibroblasts and their possible implication in blood flow. 2nd Meeting of the European Placenta Group, September 24-27, Rolduc Monastery, Netherlands.Google Scholar
  22. Skrabanek P, Balfe A, McDonald D, McKaigney J, Powell D (1980) Substance P in human cord blood and its degeneration by placenta in vitro. Eur J Obstet Gynecol Reprod Biol 11: 157–161.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1992

Authors and Affiliations

  • Renate Graf
  • Hans-Georg Frank
  • Taylan Öney

There are no affiliations available

Personalised recommendations