Skip to main content

Part of the book series: Basic and Clinical Aspects of Neuroscience ((BASIC,volume 5))

Abstract

Epileptic seizures are characterized by hyperexcitability and synchrony among populations of central neurons, but the mechanisms underlying the abnormal patterns of electric activity are only partly known. There is evidence from human autopsy material that the increased excitability results from a loss of inhibitory, presumably GABA-ergic, neurons (GABA, γ-aminobutyric acid). Possibly the hyper-excitability also depends on an abnormal increase of excitatory synaptic mechanisms. Finally, at least in experimental animals, some long-loop neuronal circuitries might be able to influence the development and generalization of epileptiform activity; for example, the noradrenergic locus ceruleus system, which originates in the pons and has widespread projections to almost the entire CNS, dampens seizures in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barry DI, Kikvadze I, Brundin P, Bolwig TG, Björklund A, Lindvall O (1987) Grafted noradrenergic neurons suppress seizure develop-ment in kindling-induced epilepsy. Proc Natl Acad Sei USA 84: 8712–8715

    Article  CAS  Google Scholar 

  2. Barry DI, Wanscher B, Kragh J, Bolwig TG, Kokaia M, Brundin P, Björklund A, Lindvall O (1989) Grafts of fetal locus coeruleus neurons in rat amygdalapiriform cortex suppress seizure development in hippocampal kindling. Exp Neurol 106: 125–132

    Article  PubMed  CAS  Google Scholar 

  3. Bengzon J, Brundin P, Kaien P, Kokaia M, Lindvall O (1991) Host regulation of noradrenaline release from grafts of seizure-suppressant locus coeruleus neurons. Exp Neurol 111: 49–54

    Article  PubMed  CAS  Google Scholar 

  4. Bengzon J, Kikvadze I, Kokaia M, Lindvall O (1992) Regional forebrain noradrenaline release in response to focal and generalized seizures induced by hippocampal kindling stimulation. Eur J Neurosci 4: 278–288

    Article  PubMed  Google Scholar 

  5. Bengzon J, Kokaia M, Brundin P, Lindvall O (1990) Seizure suppression in kindling epilepsy by intrahippocampal locus coeruleus grafts: evidence for an alpha2-adrenoreceptor mediated mechanism. Exp Brain Res 81: 433–437

    Article  PubMed  CAS  Google Scholar 

  6. Bengzon J, Kokaia Z, Lindvall O’(1993) Specific functions of grafted locus coeruleus neurons in the kindling model of epilepsy. Exp Neurol (in press)

    Google Scholar 

  7. Björklund A, Lindvall O (1986) Catecholaminergic brain stem reg-ulatory systems. In: Bloom FE (ed) Handbook of physiology - the nervous system: IV. Intrinsic regulatory system in the brain. American Physiological Society, Bethesda; pp 155–235

    Google Scholar 

  8. Browning RA, Wade DR, Marcinczyk M, Long GL, Jobe PC (1989) Regional brain abnormalities in norepinephrine uptake and dopamine beta-hydroxylase activity in the genetically epilepsy-prone rat. J Pharmacol Exp Ther 249: 229–235

    PubMed  CAS  Google Scholar 

  9. Brundin P, Strecker A (1991) Preparation and intracerebral grafting of dissociated fetal brain tissue in rats. In: Conn PM (ed) Lesions and transplantation. Academic, San Diego, pp 305–326 (Methods in neurosciences, vol 7 )

    Google Scholar 

  10. Buzsâki G, Ponomareff G, Bayardo F, Shaw T, Gage FH (1988) Sup-pression and induction of epileptic activity by neuronal grafts. Proc Natl Acad Sci USA 85: 9327–9330

    Article  PubMed  Google Scholar 

  11. Camu W, Marlier L, Lerner-Natoli M, Rondouin G, Privat A (1990) Transplantation of serotonergic neurons into the 5,7-DHT-lesioned rat olfactory bulb restores the parameters of kindling. Brain Res 815: 23–30

    Article  Google Scholar 

  12. Chauvel P, Trottier S (1986) Role of noradrenergic ascending system in extinction of epileptic phenomena. Adv Neurol 44: 475–487

    PubMed  CAS  Google Scholar 

  13. Clough RW, Browning RA, Maring ML, Jobe PC (1991) Intracerebral grafting of fetal dorsal pons in genetically epilepsy-prone rats: effects on audiogenic induced seizures. Exp Neurol 112: 195–199

    Article  PubMed  CAS  Google Scholar 

  14. Daszuta A, Strecker RE, Brundin P, Bjorklund A (1989) Serotonin neurons grafted to the adult rat hippocampus: I. Time course of growth as studied by immunohistochemistry and biochemistry. Brain Res 458: 1–19

    Article  Google Scholar 

  15. Daszuta A, Kalen P, Strecker RE, Brundin P, Bjorklund A (1989) Serotonin neurons grafted to the adult rat hippocampus. II. 5-HT release as studied by intracerebral microdialysis. Brain Res 498: 323–332

    Article  PubMed  CAS  Google Scholar 

  16. Emson PC, Joseph MH (1975) Neurochemical and morphological changes during the development of cobalt-induced epilepsy in the rat. Brain Res 93: 91–110

    Article  PubMed  CAS  Google Scholar 

  17. Fine A, Meldrum BS, Patel S (1990) Modulation of experimentally induced epilepsy by intracerebral grafts of fetal GABAergic neurons. Neuropsychologia 28: 627–634

    Article  PubMed  CAS  Google Scholar 

  18. Foote SL, Bloom FE, Aston-Jones G (1983) Nucleus locus coeruleus: new evidence of anatomical and physiological specificity. Physiol Rev 63: 844–911

    PubMed  CAS  Google Scholar 

  19. Freedman R, Taylor DA, Seiger A, Olson L, Hoffer BJ (1979) Seizures and related epileptiform activity in hippocampus trans-planted to the anterior chamber of the eye: modulation by cholinergic and adrenergic input. Ann Neurol 6: 281–295

    Article  PubMed  CAS  Google Scholar 

  20. Gastaut H, Gastaut JL, Goncalves E, Silva GF, Fernandez Sanchez GR (1975) Relative frequency of different types of epilepsy: a study employing the classification of the International League Against Epilepsy. Epilepsia 16: 457–461

    Article  PubMed  CAS  Google Scholar 

  21. Gellman RL, Kallianos JA, McNamara JO (1987) Alpha-2 receptors mediate an endogenous noradrenergic suppression of kindling development. J Pharmacol Exp Ther 241: 891–898

    PubMed  CAS  Google Scholar 

  22. Hoffer BJ, Seiger A, Taylor D, Olson L, Freedman R (1977) Seizures and related epileptiform activity in hippocampus transplanted to the anterior chamber of the eye: I. Characterization of seizures, interictal spikes and synchronous activity. Exp Neurol 54: 233–250

    Article  PubMed  CAS  Google Scholar 

  23. Iadarola MJ, Gale K (1982) Substantia nigra: site of anticonvulsant activity mediated by γ-aminobutyric acid. Science 218: 1237–1240

    Article  PubMed  CAS  Google Scholar 

  24. Jimenez-Rivera CA, Weiss GK (1989) The effect of amygdala kindled seizures on locus coeruleus activity. Brain Res Bull 22: 751–758

    Article  PubMed  CAS  Google Scholar 

  25. Jobe PC, Laird HE, Ko K, Ray T, Daily JW (1982) Abnormalities in monoamine levels in the central nervous system of the genetically epilepsy-prone rat. Epilepsia 23: 359–366

    Article  PubMed  CAS  Google Scholar 

  26. Kamphuis W, Huisman E, Wadman WJ, Lopes da Silva FH (1989) Decrease in GABA immunoreactivity and alteration of GABA metabolism after kindling in the rat hippocampus. Exp Brain Res 74: 375–386

    Article  PubMed  CAS  Google Scholar 

  27. Kamphuis W, Wadman WJ, Buijs RM, Lopes da Silva FH (1986) Decrease in number of hippocampal gamma-aminobutyric acid ( GABA) immunoreactive cells in the rat kindling model of epilepsy. Exp Brain Res 64: 491–495

    Article  PubMed  CAS  Google Scholar 

  28. Laird HE, II, Dailey JW, Jobe PC (1984) Neurotransmitter abnor-malities in genetically epileptic rodents. Fed Proc 43: 2505–2509

    PubMed  CAS  Google Scholar 

  29. Lauterborn JC, Ribak CE (1989) Differences in dopamine beta- hydroxylase immunoreactivity between the brains of genetically epilepsy-prone and Sprague-Dawley rats. Epilepsy Res 4: 161–176

    Article  PubMed  CAS  Google Scholar 

  30. Lerner-Natoli M, Rondouin G, Malafosse A, Sandillon F, Privat A, Baldy-Moulinier M (1986) Facilitation of olfactory bulb kindling after specific destruction of serotoninergic terminals in the olfactory bulb of the rat. Neurosci Lett 66: 299–304

    Article  PubMed  CAS  Google Scholar 

  31. Lindvall O, Bengzon J, Brundin P, Kalen P, Kokaia M (1990) Locus coeruleus grafts in hippocampal kindling epilepsy: noradrenaline release, receptor specificity and influence on seizure development. Prog Brain Res 82: 339–346

    Article  PubMed  CAS  Google Scholar 

  32. Mclntyre DC, Racine RJ (1986) Kindling mechanisms: current progress of an experimental epilepsy model. Prog Neurobiol 27: 1–12

    Article  Google Scholar 

  33. McNamara JO (1984) Kindling: an animal model of complex partial epilepsy. Ann Neurol 16 [Suppl]: S72–S76

    Article  Google Scholar 

  34. McNamara JO, Galloway MT, Rigsbee LC, Shin C (1984) Evidence implicating substantia nigra in regulation of kindled seizure threshold. Neuroscience 4: 2410–2417

    PubMed  CAS  Google Scholar 

  35. Murata Y, Chiba T, Brundin P, Bjorklund A, Lindvall O (1990) Formation of synaptic graft-host connections by noradrenergic locus coeruleus neurons transplanted into the adult rat hippocampus. Exp Neurol 110: 258–267

    Article  PubMed  CAS  Google Scholar 

  36. Olson L, Freedman R, Seiger A, Hoffer B (1977) Electrophysiology and cytology of hippocampal formation transplants in the anterior chamber of the eye: 1. Intrinsic organization. Brain Res 119: 87–106

    Article  PubMed  CAS  Google Scholar 

  37. Olson L, Seiger A, Hoffer BJ, Taylor D (1979) Isolated cate- cholaminergic projections from substantia nigra and locus coeruleus to caudate, hippocampus and cerebral cortex formed by intraocular sequential double brain grafts. Exp Brain Res 35: 47–67

    Article  PubMed  CAS  Google Scholar 

  38. Olson L, Seiger A, Taylor D, Freedman R, Hoffer BJ (1980) Conditions for adrenergic hyperinnervation in hippocampus: I. Histochemical evidence from intraocular double grafts. Exp Brain Res 39: 277–288

    PubMed  CAS  Google Scholar 

  39. Piredda S, Gale K (1985) A crucial epileptogenic site in deep prepyriform cortex. Nature 317: 623–625

    Article  PubMed  CAS  Google Scholar 

  40. Racine RJ (1972) Modification of seizure activity by electrical stim-ulation: II. Motor seizure. Electroencephalogr. Clin Neurophysiol 32: 284–294

    Google Scholar 

  41. Racine RJ, Burnham WM (1984) The kindling model. In: Schwartzkroin PA, Wheal HV (eds) Electrophysiology of epilepsy. Academic, London, pp 153–171

    Google Scholar 

  42. Ribak CE, Harris AB, Vaughn JE, Roberts E (1979) Inhibitory, GABAergic nerve terminals decrease at sites of focal epilepsy. Science 205: 211–214

    Article  PubMed  CAS  Google Scholar 

  43. Schwartzkroin PA, Kunkel DD (1988) Viability of GABAergic striatal neurons grafted into normal hippocampus. Soc Neurosci Abstr 233. 8.

    Google Scholar 

  44. Sirinathsinghji DJS, Dunnett SB, Isacson O, Clarke DJ, Kendrick K, Bjorklund A (1988) Striatal grafts in rats with unilateral neostriatal lesions: II. In vivo monitoring of GABA release in globus pallidus and substantia nigra. Neuroscience 24: 803–811

    Article  PubMed  CAS  Google Scholar 

  45. Stevens JR, Phillips I, de Beaurepaire R (1988) Gamma-vinyl GABA in endopiriform area suppresses kindled amygdala seizures. Epilepsia 29: 404–411

    Article  PubMed  CAS  Google Scholar 

  46. Stevens JR, Phillips I, Freed WJ, Poltorak M (1988) Cerebral trans-plants for seizures: preliminary results. Epilepsia 29: 731–737

    Article  PubMed  CAS  Google Scholar 

  47. Taylor D, Freedman R, Seiger A, Olson L, Hoffer BJ (1980) Conditions for adrenergic hyperinnervation in hippocampus: II. Electro-physiological evidence from intraocular double grafts. Exp Brain Res 39: 289–299

    Article  PubMed  CAS  Google Scholar 

  48. Wada JA, Sato M, Corcoran ME (1974) Persistent seizure suscepti-bility and recurrent spontaneous seizures in kindled cats. Epilepsia 15: 465–478

    Article  PubMed  CAS  Google Scholar 

  49. Wictorin K, Bjorklund A (1989) Connectivity of striatal grafts im-planted into the ibotenic acid-lesioned striatum: II. Cortical afferents. Neuroscience 30: 297–311

    Article  PubMed  CAS  Google Scholar 

  50. Wictorin K, Isacson O, Fischer W, Nothias F, Peschanski M, Bjorklund A (1988) Connectivity of striatal grafts implanted into the ibotenic acid-lesioned striatum: I. Subcortical afferents. Neuroscience 27: 547–562

    Article  PubMed  CAS  Google Scholar 

  51. Wictorin K, Simerly RB, Isacson O, Swanson LW, Bjorklund A, (1989) Connectivity of striatal grafts implanted into the ibotenic acid-lesioned striatum: III. Efferent projecting graft neurons and their relation to host afferents within the grafts. Neuroscience 30: 313–330

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bengzon, J., Lindvall, O. (1993). Transplantation in Experimental Epilepsy. In: Lindvall, O. (eds) Restoration of Brain Function by Tissue Transplantation. Basic and Clinical Aspects of Neuroscience, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77718-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77718-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-55823-1

  • Online ISBN: 978-3-642-77718-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics