Skip to main content

The Biodegradation of Nondegradable Polymers

  • Conference paper
Degradation Phenomena on Polymeric Biomaterials

Abstract

The biostability of materials used for long term implantable devices has been taken for granted far too often in the past. It is commonly stated that certain materials are inert, nondegradable or implantable, that is, biostable. Is there really any such thing as a nondegradable, inherently biostable material? Silicone rubber, for example, is a polymer that is generally accepted as biostable. None-the-less, it can absorb lipids and stress crack when used as a heart valve poppet. Silicone rubber finger joints can crack and break. Silicone rubber insulated pacemaker leads can fail because of wear, cold flow and/or calcification. The lives of many people depend upon the resistance of their polyester vascular prostheses to degradation. None-the- less, we have seen examples of fibrous lumps of tissue removed from pacemaker patients containing fragments of the dacron pouch used to keep their pulse generators from migrating. Each of these (and many other) materials has been tested on the bench and has been proven to be stable, resistant to oxidation and other degradation mechanisms. The materials have been implanted in animals for long periods of time and have been proven to be “nondegradable”. In fact, these materials have been used very successfully in many chronically implanted device models. Then why the occasional failure of a device made from a biostable polymer? One answer may be the failure or inability to account for device-material-manufacturing process-tissue interactions as well as individual differences (biologic variance).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Okita Y, Miki S, Kusuhara K, et al (1989) J Vase Surg 10 (5): 554–556

    CAS  Google Scholar 

  2. Godard F, King M, Guidoin R, et al (1981) J Mal Vase 6 (3): 167–171

    CAS  Google Scholar 

  3. Berger K and Sauvage LR (1981) Ann Surg 193 (4): 477–491

    CAS  Google Scholar 

  4. Zaikof GE (1985) JMS-Rev, Macromol Chem Phys C25 (4): 551–597

    Google Scholar 

  5. Kopecek J and Ulbrich K (1983) Prog Polym Sei 9: 1–58

    Article  CAS  Google Scholar 

  6. McClellan KA and Billson FA (1991) Ophthalmie Surg 22 (2): 74–77

    CAS  Google Scholar 

  7. Hayasaka S, Ishiguro SI, Shiono T, et al (1982) Am J Ophthalmol 93 (1): 111–117

    CAS  Google Scholar 

  8. Hudson JA and Crugnola A 1987 ) J Biomater Appl 1 (4): 487–501

    CAS  Google Scholar 

  9. Teoh SH, Martin RL, Lim SC, et al (1990) ASAIO Trans 36 (3): 417–421

    Google Scholar 

  10. Vondracek P and Dolzel B (1984) Biomaterials 5: 209–214

    Article  CAS  Google Scholar 

  11. The Pacemaker Telectronics Bulletin for the Cardiac Pacemaker Clinic. Telectronics, USA, January 1972, p7

    Google Scholar 

  12. Dow Corning Clean Grade Elastomers. Bulletin 51–209A, May 1979

    Google Scholar 

  13. In The International Plastics Selector, Cordura, LaJolla, p277, 1977

    Google Scholar 

  14. Dolezel B, Adamirova L, Naprstek Z, et al (1989) Biomaterials 10 (2): 96–100

    Article  CAS  Google Scholar 

  15. Dolezel B, Naprstek Z and Lysenkova A (1979) Proceedings of the Sixth World Symposium on Cardiac Pacing. In C. Meere (ed) Montreal, PACESYMP, sect 3 6–5

    Google Scholar 

  16. Openheimer BS (1955) Cancer Res 15: 333

    Google Scholar 

  17. Herzenberg JE, Harrelson JM, Campbell DC et al (1988) Clin Orthop 228: 88–93

    Google Scholar 

  18. Davidson JA, Gir S and Paul JP (1988) J Biomed Mater Res 22 (3 Suppl): 281–309

    Article  CAS  Google Scholar 

  19. Remagen W and Morscher E (1984) Arch Orthop Trauma Surg 103 (3): 145–51

    Article  CAS  Google Scholar 

  20. Eyerer P and Ke YC (1984) J Biomed Mater Res 18 (9): 1137–1151

    Article  CAS  Google Scholar 

  21. Kurt M, Eyerer P, Ascherei R, et al (1988) J Biomater Appl 3 (1): 33–51

    Article  Google Scholar 

  22. Wasserbauer R, Beranova M, Vancurova D et al (1990) Biomaterials 11 (1): 36–40

    Article  CAS  Google Scholar 

  23. Beranova M, Wasserbauer R, Vancurova D, et al (1990) Biomaterials 11 (7): 521–524

    Article  CAS  Google Scholar 

  24. Jongebloe WL, Figueras MJ, Humalda D, et al (1986) Doc Ophthalmol 61 (3-4): 303–312

    Article  Google Scholar 

  25. Apple DJ, Craythorn JM, Olson RJ, et al (1984) Ophthamology 91 (4): 403–419

    CAS  Google Scholar 

  26. Mowbray SL, Chang SH and Dasella JF (1983) J Am Intraccul Implant Soc 9 (2): 143–147

    CAS  Google Scholar 

  27. Brase DW and Millender LH (1986) J Hand Surg 11 (2): 175–183

    CAS  Google Scholar 

  28. Boretos JW (1973) In Concise Guide to Biomedical Polymers, Charles C. Thomas, Publisher, Springfield, IL p 11–12

    Google Scholar 

  29. Hartman LC, Bessette RE, Baier RE, et al (1988) J Biomed Mater Res 22 (6): 475–484

    Article  CAS  Google Scholar 

  30. Bognolo DA (1985) In Barold SS (ed) Modern Cardiac Pacing, Futura Publishing Co, Mount Kisco, pp 199–229

    Google Scholar 

  31. Blais P (1990) J Appl Biomater 1: 197

    Article  Google Scholar 

  32. Bloch B and Hastings G (1972) In Plastics Materials in Surgery, Thomas CC (Publisher) pp 97–98

    Google Scholar 

  33. Lelah MD and Cooper SL (1986) In Polyurethanes in Medicine, CRC Press, Boca Raton

    Google Scholar 

  34. Batich C, Williams J and King R (1989) J Biomed Mater Res 23 (A3 Suppl): 311–319

    Article  CAS  Google Scholar 

  35. Szycher M and Siciciliano A (1991) J Biomater Appl 5: 323–336

    Article  CAS  Google Scholar 

  36. Weiss R (1991) Science 252: 1060

    Article  Google Scholar 

  37. Coury AJ, Stokes, KB, Cahalan PT, et al (1987) Life Support Syst 5 (1): 25–39

    CAS  Google Scholar 

  38. Stokes KB and Stephenson NL (1982) In Barold SS and Mujica J (eds) The Third Decade of Cardiac Pacing. Futura Publishing Co, Mount Kisco, pp 3 65–416

    Google Scholar 

  39. Stokes K, Cobian K and Lathrop T (1979) In Meere C (ed) Proceedings of the VI World Symposium on Cardiac Pacing PACESYMP, Montreal, sect 28–2.

    Google Scholar 

  40. Stephenson NL (1980) Medtronic News X (2): 10

    Google Scholar 

  41. Stephenson NL (1980) Medtronic News X (2): 10

    Google Scholar 

  42. Stokes K and Cobian K (1982) Biomaterials 3: 225

    Article  CAS  Google Scholar 

  43. Boretos JW, Pierce WS, Baier RE, et al (1975) J Biomed Mater Res 9: 327.

    Article  CAS  Google Scholar 

  44. Boretos JW (1972) J Biomed Mater Res 6: 437

    Google Scholar 

  45. Silastic Medical Grade Elastomers Q-4635, Q7–4650, Q74665. Dow Corning, 1982

    Google Scholar 

  46. Ulrich H and Bonk HW (1982) Proceedings of the SPI 27th Annual Technical/Marketing Conferene p143

    Google Scholar 

  47. Stokes K (1982) Stimucoeur Medical 10: 205

    Google Scholar 

  48. Byrd CL, McArthur, W, Stokes, K, et al (1983) Pace 6: 686

    Google Scholar 

  49. Stokes K (1985) In Barold SS (ed) Modern Cardiac Pacing. Futura Publishing Co, Mount Kisco, pp 173–198

    Google Scholar 

  50. Beyersdorf F and Kruezer J (1985) In Aubert D and Ector H (eds) Pacemaker Leads Elsevier, Amsterdam, 287–290

    Google Scholar 

  51. Stokes KB, Frazer WA and Carter EA (1984) Proceedings ANTEC 84 84: 1073

    Google Scholar 

  52. Chawala AS, Blais P, Hinberg I and Johnson D (1988) Biomater Artif Cells Artif Organs 16 (4): 785–800

    Google Scholar 

  53. Szycher M (1988) J Biomater Appl 3 (2): 297–402

    Article  CAS  Google Scholar 

  54. Stokes K, Urbanski P and Cobian K (1987) In Planck H, Syre I, Dauner M, et al (eds) Polyurethanes in Biomedical Enginering II. Elsevier, Amsterdam, pp 109–127

    Google Scholar 

  55. Coury A, Cahalan P, Schultz E, (1984) Transactions Second World Congress on Biomaterials p252

    Google Scholar 

  56. Coury A, Cahalan P, Slaikeu P, (1985) Transactions 11th Annual Meeting of the Society for Biomaterials p134

    Google Scholar 

  57. Brauhmstedt-Sutherland K (July, 1991 ) Masters Thesis, Dept of Eng, U Minn

    Google Scholar 

  58. Stokes K (1988) J Biomater Appl 3: 228–258

    Article  CAS  Google Scholar 

  59. Zhao Q, Agger MP, Fitzpatrick M, et al (1990) J Biomed Mater Res 24: 621–637

    Article  CAS  Google Scholar 

  60. Zhao Q, Topham N, Anderson JM, et al (1991) J Biomed Mater Res 25: 177–183

    Article  CAS  Google Scholar 

  61. Sibille Y and Reynolds HV (1990) Am Rev Respir Dis 141: 471–501

    CAS  Google Scholar 

  62. Anderson, JM, personal communication

    Google Scholar 

  63. Ratner BD, Gladhil KW and Horbett TA (1988) J Biomed Mater Res 22: 509–527

    Article  CAS  Google Scholar 

  64. Marchant RE, Anderson JM, Castillo E, et al (1986) J Biomed Mater Res 20: 153–168

    Article  CAS  Google Scholar 

  65. Smith R, Williams DF and Oliver C (1987) J Biomed Mater Res 21: 1149–1166

    Article  CAS  Google Scholar 

  66. Thoma RJ and Phillips RE (1987) J Biomed Mater Res 21 (4): 525–530

    Article  CAS  Google Scholar 

  67. Thoms RJ (1987) J Biomater Appl 1 (4): 449–446

    Google Scholar 

  68. Klebanoff SJ (1968) J Bacteriol 95: 2131–2138

    CAS  Google Scholar 

  69. Reynolds HY (1985) Dis Mon 31: 1–98

    Article  CAS  Google Scholar 

  70. Roos D and Balm AJM (1980) In Sbarra AJ and Strauss RR (eds) The reticuloendothelial system. A Comprehensible treatise: biochemistry and metabolism. Plenum, New York pp 189–299

    Google Scholar 

  71. Stokes KB and Anderson JM (1991) Pace 14 (4): 731

    Google Scholar 

  72. Stokes, K, Urbanski, P and Upton J (1990) J Biomater Sei Polymer Edn 1 (3): 207–230

    Article  CAS  Google Scholar 

  73. Stokes KB, Coury A and Urbanski P (1987) J biomaterials Applications 1: 411–448

    Article  CAS  Google Scholar 

  74. Medtronic Product Performance Report, Medtronic Inc, 7000 Central Ave N.E., MS T152, Minneapolis, MN 55432, USA

    Google Scholar 

  75. Phillips W, Pierce W, Rosenberg G, et al (1980) In Szycher M and Robinson E (eds) Synthetic Biomedical Polymers Concepts and Applications. Technomic, Westport, pp 39–57

    Google Scholar 

  76. Olsen D (1987) Transactions of the 13th Annual Meeting of the Society for Biomaterials p168

    Google Scholar 

  77. Bucherl ES (1985) Z Kardiol 74 (Suppl 6): 65–71

    Google Scholar 

  78. Paynter RW, Askill IN, Glick SH, et al (1988) J Biomed Mater Res 22 (8): 687–698

    Article  CAS  Google Scholar 

  79. Hilbert SL, Ferrans VJ, Tomita Y, et al (1987) J Thorac Cardiovasc Surg 94 (3): 419–429

    CAS  Google Scholar 

  80. Yu- LS, Yuan B, Bishop, D, et al (1989) ASAIO Trans 35 (3): 301–304

    Article  Google Scholar 

  81. Lo HB, Herold M, Reul H (1988) ASAIO Trans 34 (3): 839–844

    CAS  Google Scholar 

  82. Dong DE, Andrade JD & Coleman DL (1987) J Biomed Mater Res 21 (6): 683–700

    Article  CAS  Google Scholar 

  83. Stupp SI & Kusleika R (1985) J Biomed Mater Res 19 (3): 321–324

    Article  CAS  Google Scholar 

  84. Imai Y (1985) Artif Organs 9 (3): 255–258

    Article  CAS  Google Scholar 

  85. Schoen FJ, Harasaki H, Kim KM, et al (1988) J Biomed Mater Res 22 (AI): 11–36

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1992 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Stokes, K.B., Urbanski, P.W. (1992). The Biodegradation of Nondegradable Polymers. In: Planck, H., Dauner, M., Renardy, M. (eds) Degradation Phenomena on Polymeric Biomaterials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77563-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77563-5_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77565-9

  • Online ISBN: 978-3-642-77563-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics