Advertisement

Reconstruction from Image Correspondences

Chapter
  • 139 Downloads
Part of the Springer Series in Information Sciences book series (SSINF, volume 28)

Abstract

The data for reconstruction from image correspondences consist of corresponding points from two images of the same scene taken from different viewpoints. A point in the first image corresponds to a point in the second image if and only if both points are projections of the same point in space. Reconstruction is the task of finding the relative positions of the two viewpoints compatible with the image correspondences. If sufficiently many image correspondences in general position are available then the relative position is determined up to a single unknown scale factor and a single 180° twist about the line joining the optical centres of the two cameras. There are many mathematically equivalent ways of formulating reconstruction. The imaging surface can be a plane or a sphere or some other more complicated shape. The rotation of the camera can be described using orthogonal matrices or quaternions and the geometry of reconstruction can be described in terms of Euclidean or projective geometry. The different formulations are equivalent, in that it is straightforward to translate from one formulation to another.

Keywords

Orthogonal Matrix Optical Centre Critical Surface Epipolar Line Antisymmetric Matrix 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Faugeras O.D. & Maybank S.J. 1990 Motion from point matches: multiplicity of solutions. International J. Computer Vision 4, 225–246.CrossRefGoogle Scholar
  2. Hay J.C. 1966 Optical motions and space perception: an extension of Gibson’s analysis. Psychological Review 73, 550–565.CrossRefGoogle Scholar
  3. Hesse O. 1863 Die cubische Gleichung, von welcher die Lösung des Problems der Homographie von M. Chasles abhängt. J. Reine Angew. Math. 62, 188–192.CrossRefzbMATHGoogle Scholar
  4. Hofmann W. 1950 Das Problem der “Gefährlichen Flächen in Theorie und Praxis”. Dissertation, Fakultät für Bauwesen der Technischen Hochschule München, München, FR Germany. Published in Reihe C, No. 3 der Deutschen Geodätischen Kommission bei der Bayerischen Akademie der Wissenschaften, München 1953.Google Scholar
  5. Horn B.K.P. 1990 Relative orientation. International J. Computer Vision 4, 59–78.CrossRefGoogle Scholar
  6. Krames J. 1940 Zur Ermittlung eines Objektes aus zwei Perspektiven. (Ein Beitrag zur Theorie der “gerfählichen Örter”. Monatsch. Math. Physik 49, 327–354.CrossRefGoogle Scholar
  7. Krames J. 1941 Über bemerkenswerte Sonderfälle des “Gefährlichen Ortes” der photogrammetrischen Hauptaufgabe. Monatsch. Math. Physik 50.Google Scholar
  8. Longuet-Higgins H.C. 1981 A computer algorithm for reconstructing a scene from two projections. Nature 293, 133–135.CrossRefADSGoogle Scholar
  9. Longuet-Higgins H.C. 1986 The reconstruction of a plane surface from two perspective projections. Proc. Royal Soc. London, Series B 227, 399–410.CrossRefADSMathSciNetGoogle Scholar
  10. Longuet-Higgins H.C. 1988 Multiple interpretations of a pair of images of a surface. Proc. Royal Soc. London, Series A 418, 1–15.CrossRefADSMathSciNetGoogle Scholar
  11. Maybank S.J. 1990 The projective geometry of ambiguous surfaces. Phil. Trans. Royal Soc. London, Series A 332, 1–47.CrossRefADSMathSciNetGoogle Scholar
  12. Mirsky L. 1961 An Introduction to Linear Algebra. Oxford: Clarendon Press.Google Scholar
  13. Negahdaripour S. 1990 Multiple interpretations of the shape and motion of objects from two perspective images. IEEE Trans. Pattern Analysis and Machine Intelligence 12, 1025–1039.CrossRefGoogle Scholar
  14. Sturm R. 1869 Das Problem der Projektivität und seine Anwendung auf die Flächen zweiten Grades. Math. Annalen 1, 533–573.CrossRefMathSciNetGoogle Scholar
  15. Tsai R.Y. & Huang T.S. 1981 Estimating three-dimensional motion parameters of a rigid planar patch. IEEE Trans. Acoustics, Speech, and Signal Processing 29, 1147–1152.CrossRefGoogle Scholar
  16. Tsai R.Y. & Huang T.S. 1984 Uniqueness and estimation of three-dimensional motion parameters of rigid objects with curved surfaces. IEEE Trans. Pattern Analysis and Machine Intelligence 6, 13–27.CrossRefADSGoogle Scholar
  17. Wunderlich W. 1942 Zur Eindeutigkeitsfrage der Hauptaufgabe der Photogrammetrie. Monatsch. Math. Physik 50, 151–164.CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1993

Authors and Affiliations

  1. 1.Hirst Research CentreGEC-Marconi LimitedWembley, MiddlesexUK

Personalised recommendations