Skip to main content

Brainstem Mechanisms of Pain Modulation: Anatomy and Physiology

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 104 / 2))

Abstract

Opioids relieve pain through actions upon the nervous system. Under certain circumstances, for example, inflammation, opioids may act locally upon peripheral tissues (see Chap. 34). However, systemically administered opioids produce analgesia primarily through a direct action on receptors in the central nervous system (CNS). Direct evidence on this point is provided by clinical studies demonstrating that, compared with systemic administration, lower doses are required to produce analgesia when opioids are given intracerebroventricularly (Lazorthes et al. 1988) or intraspinally (see Chap. 33). Animal studies in which opioids were microinjected into the CNS confirm these clinical observations (Yaksh et al. 1988; Chap. 32) and extend them by demonstrating reversal of the antinociceptive effect of systemically administered opioids by direct application of opioid antagonists at CNS sites (Azami et al. 1982; Dickenson et al. 1979; Yeung and Rudy 1980). This chapter will review what is known of the CNS circuitry underlying the painrelieving action of exogenously administered opioids.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abols lA, Basbaum AI (1981) Afferent connections of the rostral medulla of the cat: a neural substrate for midbrain-medullary interactions in the modulation of pain. J Comp Neurol 201:285–297

    PubMed  CAS  Google Scholar 

  • Anderson EG, Proudfit HK (1981) The functional role of the bulbospinal serotonergic nervous system. In: Jacobs BL, Gelperin A (eds) Serotonin neurotransmission and behavior. MIT Press, Cambridge, pp 307–338

    Google Scholar 

  • Azami J, Llewelyn MD, Roberts MHT (1982) The contribution of nucleus reticularis paragigantocellularis and nucleus raphe magnus to the analgesia produced by systemically administered morphine, investigated with the microinjection technique. Pain 12:229–246

    PubMed  CAS  Google Scholar 

  • Barbaro NM, Hammond DL, Fields HL (1985) Effects of intrathecally administered methysergide and yohimbine on micro stimulation-produced antinociception in the rat. Brain Res 343:223–229

    PubMed  CAS  Google Scholar 

  • Barton C, Basbaum AI, Fields HL (1980) Dissociation of supraspinal and spinal actions of morphine: a quantitative evaluation. Brain Res 188:487–498

    PubMed  CAS  Google Scholar 

  • Basbaum AI, Fields HL (1984) Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci 7:309–338

    PubMed  CAS  Google Scholar 

  • Basbaum AI, Clanton CH, Fields HL (1976) Opiate and stimulus-produced analgesia: functional anatomy of a medullospinal pathway. Proc Nat! Acad Sci USA 73:4685–4688

    PubMed  CAS  Google Scholar 

  • Bederson IB, Fields HL, Barbaro NM (1990) Hyperalgesia during naloxoneprecipitated withdrawal from morphine is associated with increased on-cell activity in the rostral ventromedial medulla. Somatosens Mot Res 7:185–203

    PubMed  CAS  Google Scholar 

  • Beitz Al (1982) The sites of origin of brainstem neurotensin projections to the rodent nucleus raphe magnus. J Neurosci 2:829–842

    PubMed  CAS  Google Scholar 

  • Bennett Gl, Hayashi H, Abdelmoumene M, Dubner R (1979) Physiological properties of stalked cells of the substantia gelatinosa intracellularly stained with horseradish peroxidase. Brain Res 164:285–289

    PubMed  CAS  Google Scholar 

  • Besson I-M, Chaouch A (1987) Peripheral and spinal mechanisms of nociception. Physiol Rev 67:67–186

    PubMed  CAS  Google Scholar 

  • Boivie J, Meyerson BA (1982) A correlative anatomical and clinical study of pain suppression by deep brain stimulation. Pain 13:113–126

    PubMed  CAS  Google Scholar 

  • Bowker RM, Westlund KN, Coulter ID (1981) Origins of serotonergic projections to the spinal cord in rat: an immunocytochemical-retrograde transport study. Brain Res 226:187–199

    PubMed  CAS  Google Scholar 

  • Bowker RM, Abbot LC, Dilts RP (1988) Peptidergic neurons in the nucleus gigantocellularis: their distribution, interrelationships, and projections to the spinal cord. Prog Brain Res 77:95–127

    PubMed  CAS  Google Scholar 

  • Craig AD, Burton H (1981) Spinal and medullary lamina I projection to nucleus submedius in medial thalamus: a possible pain center. J Neurophysiol 45:443–466

    PubMed  Google Scholar 

  • Craig AD Jr, Linington AI, Kniffki KD (1989) Cells of origin of spinothalamic tract projections to the medial and lateral thalamus in the cat. J Comp Neurol 289:568–585

    PubMed  Google Scholar 

  • Dahlstrom A, Fuxe K (1964) Evidence for the existence of monoamine neurons in the central nervous system. II. Experimental demonstration of monoamines in the cell bodies of brain stem neurons. Acta Physiol Scand 62 [SuppI232]:1–55

    Google Scholar 

  • Dickenson AH, LeBars D (1987) Supraspinal morphine and descending inhibition acting on the dorsal horn of the rat. 1 Physiol (Lond) 384:81–107

    CAS  Google Scholar 

  • Dickenson AH, Oliveras l-L, Besson I-M (1979) Role of the nucleus raphe magnus in opiate analgesia as studied by the microinjection technique in the rat. Brain Res 170:95–111

    PubMed  CAS  Google Scholar 

  • Dickenson AH, Sullivan AF, Fournie-Zaluski MC, Roques BP (1987) Prevention of degradation of endogenous enkephalins produces inhibition of nociceptive neurones in rat spinal cord. Brain Res 408: 185–191

    PubMed  CAS  Google Scholar 

  • Dostrovsky JO, Hu JW, Sessle BJ, Sumino R (1982) Stimulation sites in the periaqueductal gray, nucleus raphe magnus and adjacent regions effective in suppressing the oral-facial reflexes. Brain Res 252:287–297

    PubMed  CAS  Google Scholar 

  • Drower El, Hammond DL (1988) GABAergic modulation of nociceptive threshold: effects of THIP and bicuculline microinjected in the ventral medulla of the rat. Brain Res 450:316–324

    PubMed  CAS  Google Scholar 

  • Dubner R (1988) The effect of behavioral state on the sensory processing of nociceptive and non-nociceptive information. Prog Brain Res 77:213–223

    PubMed  CAS  Google Scholar 

  • Duncan GH, Bushnell MC, Bates R, Dubner R (1987) Task-related responses of monkey medullary dorsal horn neurons. J Neurophysiol 57:1289–3100

    Google Scholar 

  • Fanselow MS (1986) Conditioned fear-induced opiate analgesia: a competing motivational state theory of stress analgesia. Ann NY Acad Sci 467:40–54

    PubMed  CAS  Google Scholar 

  • Fields HL, Basbaum AI (1978) Brainstem control of spinal pain-transmission neurons. Annu Rev Physiol 40:217–248

    PubMed  CAS  Google Scholar 

  • Fields HL, Heinricher MM, Mason PM (1991) Neurotransmitters in nociceptive modulatory circuits. Annu Rev Neurosci 14:219–245

    PubMed  CAS  Google Scholar 

  • Finley CCW, Lindstrom P, Petrucz P (1984) Immunocytochemical localization of beta-endorphin containing neurones in the rat brain. Neuroendocrinology 32:28–42

    Google Scholar 

  • Gallagher DW, Pert A (1978) Afferents to brain stem nuclei (brainstem raphe, nucleus reticularis pontis caudalis and nucleus gigantocellularis) in the rat as demonstrated by microiontophoretically applied horseradish peroxidase. Brain Res 144:257–275

    Google Scholar 

  • Gebhart GF, Jones SL (1988) Effects of morphine given in the brain stem on the activity of dorsal horn nociceptive neurons. Prog Brain Res 77:229–244

    PubMed  CAS  Google Scholar 

  • Giesler GJ, Gerhart KD, Yezierski RP, Wilcox TK, Willis WD (1981) Postsynaptic inhibition of primate spinothalamic neurons by stimulation in nucleus raphe magnus. Brain Res 204: 184–188

    PubMed  Google Scholar 

  • Giradot MN, Brennan TJ, Martindale ME, Foreman RD (1987) Effects of stimulating the subcoeruleus-parabrachial region on the non-noxious and noxious responses of Tl-T5 spinothalamic tract neurons in the primate. Brain Res 409:19–30

    Google Scholar 

  • Glazer EJ, Basbaum AI (1984) Axons which take up [3H]serotonin are presynaptic to en kephalin immunoreactive neurons in cat dorsal horn. Brain Res 298:386–391

    PubMed  CAS  Google Scholar 

  • Gracely RH, Dubner R, Wolskee PJ, Deeter WR (1983) Placebo naloxone can alter post-surgical pain by separate mechanisms. Nature 306:264–265

    PubMed  CAS  Google Scholar 

  • Grevert P, Albert LH, Goldstein A (1983) Partial antagonism of placebo analgesia by naloxone. Pain 16:129–144

    PubMed  CAS  Google Scholar 

  • Hardy SGP (1985) Analgesia elicited by prefrontal stimulation. Brain Res 339:281–284

    PubMed  CAS  Google Scholar 

  • Hardy SGP (1986) Projections to the midbrain from the medial versus lateral prefrontal cortices of the rat. Neurosci Lett 63: 159–164

    PubMed  CAS  Google Scholar 

  • Haws CM, Williamson AM, Fields HL (1989) Putative nociceptive modulatory neurons in the dorsolateral ponto mesencephalic reticular formation. Brain Res 483:272–282

    PubMed  CAS  Google Scholar 

  • Hayes RL, Price DD, Bennett GJ, Wilcox GL, Mayer DJ (1978) Differential effect of spinal cord lesions on narcotic and non-narcotic suppression of nociceptive reflexes: further evidence for the physiological multiplicity of pain modulation. Brain Res 155:91–101

    PubMed  CAS  Google Scholar 

  • Hayes RL, Katayama Y, Watkins LR, Becker DP (1984) Bilateral lesions of the dorsolateral funiculus of the cat spinal cord: effects on basal nociceptive reflexes and nociceptive suppression produced by cholinergic activation of the pontine parabrachial region. Brain Res 311:267–280

    PubMed  CAS  Google Scholar 

  • Heinricher MM, Cheng Z-F, Fields HL (1987) Evidence for two classes of nociceptive modulating neurons in the periaqueductal gray. J Neurosci 7:271–278

    PubMed  CAS  Google Scholar 

  • Heinricher MM, Kaplan HJ (1991) GABA-mediated inhibition in rostral ventromedial medulla: role in nociceptive modulation in the lightly anesthetized rat. Pain 47:105–113

    PubMed  CAS  Google Scholar 

  • Heinricher MM, Haws CM, Fields HL (1991) Evidence for GAB A-mediated control of putative nociceptive modulating neurons in the rostral ventromedial medulla: iontophoresis of bicuculline eliminates the off-cell pause. Somatosens Mot Res 8:215–225

    PubMed  CAS  Google Scholar 

  • Heinricher MM, Morgan MM, Fields HL (1992) Direct and indirect actions of morphine on medullary neurons that modulate nociception. Neuroscience 48: 533–543

    PubMed  CAS  Google Scholar 

  • Herz A, Millan MJ (1988) Endogenous opioid pep tides in the descending control of nociceptive responses of spinal dorsal horn neurons. Prog Brain Res 77: 263–273

    PubMed  CAS  Google Scholar 

  • Holstege G (1988) Direct and indirect pathways to lamina I in the medulla oblongata and spinal cord of the cat. Prog Brain Res 77:47–93

    PubMed  CAS  Google Scholar 

  • Hosobuchi Y, Adams JE, Linchitz R (1977) Pain relief by electrical stimulation of the central gray matter in humans and its reversal by naloxone. Science 197:183–186

    PubMed  CAS  Google Scholar 

  • Hunsperger RW (1956) Role of substantia grisea centralis mesencephali in electrically induced rage reactions. In: Kappers JA (ed) Progress in neurobiology, vol 1. Elsevier, New York, p 289

    Google Scholar 

  • Jacquet Y (1978) Opiate effects after adrenocorticotropin or beta-endorphin injection in the periaqueductal gray mater of rats. Science 201:1032–1034

    PubMed  CAS  Google Scholar 

  • Jensen TS, Yaksh TL (1986) II. Examination of spinal monoamine receptors through which brainstem opiate-sensitive systems act in the rat. Brain Res 363:114–127

    PubMed  CAS  Google Scholar 

  • Jensen TS, Yaksh TL (1989) Comparison of the antinociceptive effect of morphine and glutamate at coincidental sites in the periaqueductal gray and medial medulla in rats. Brain Res 476:1–9

    PubMed  CAS  Google Scholar 

  • Jones SL, Gebhart GF (1986) Quantitative characterization of ceruleospinal inhibition of nociceptive transmission in the rat. J Neurophysiol 56:1397–1410

    PubMed  CAS  Google Scholar 

  • Jones SL, Gebhart GF (1988) Inhibition of spinal nociceptive transmission from the midbrain, pons and medulla in the rat: activation of descending inhibition by morphine, glutamate and electrical stimulation. Brain Res 460:281–296

    PubMed  CAS  Google Scholar 

  • Jordan LM, Kenshalo DR, Martin RF, Haber LH, Willis WD (1978) Depression of primate spinothalamic tract neurons by iontophoretic application of 5-hydroxytryptamine. Pain 5:135–142

    PubMed  CAS  Google Scholar 

  • Jurgens V, Pratt R (1979) Role of the periaqueductal gray in vocal expression of emotion. Brain Res 167:367–387

    PubMed  CAS  Google Scholar 

  • Kaplan HJ, Fields HL (1990) Reversal of naloxone-precipitated hyperalgesia in opiate dependent rats by lidocaine microinjection in the rostral ventromedial medulla: evidence for a pain facilitating system. Pain Suppl 5:S445

    Google Scholar 

  • Katayama Y, Watkins LR, Becker DP, Hayes RL (1984) Non-opiate analgesia induced by carbachol microinjection into the pontine parabrachial region of the cat. Brain Res 296:263–283

    PubMed  CAS  Google Scholar 

  • Lazorthes Y, Verdie JC, Caute B, Maranhao R, Tafani M (1988) Intracerebroventricular morphinotherapy for control of chronic cancer pain. Prog Brain Res 77:395–405

    PubMed  CAS  Google Scholar 

  • Levine JD, Gordon NC (1986) Method of administration determines the effect of naloxone on pain. Brain Res 365:377–378

    PubMed  CAS  Google Scholar 

  • Levine JD, Gordon NC, Fields HL (1978a) The mechanisms of placebo analgesia. Lancet 2:654–657

    PubMed  CAS  Google Scholar 

  • Levine JD, Gordon NC, Jones RT, Fields HL (1978b) The narcotic antagonist naloxone enhances clinical pain. Nature 272:826–827

    PubMed  CAS  Google Scholar 

  • Levy R, Lamb S, Adams J (1987) Treatment of chronic pain by deep brain stimulation: long-term follow-up and review of the literature. Neurosurgery 21:885–893

    PubMed  CAS  Google Scholar 

  • Lewis JW (1986) Multiple neurochemical and hormonal mechanisms of stressinduced analgesia. Ann NY Acad Sci 467:194–204

    PubMed  CAS  Google Scholar 

  • Lewis ME, Khachaturian H, Watson SJ (1985) Combined autoradiographicimmunocytochemical analysis of opioid receptors and opioid peptide neuronal systems in brain. Peptides 6(Sl):37–47

    PubMed  CAS  Google Scholar 

  • Light AR, Kavookjian AM (1988) Morphology and ultrastructure of physiologically identified substantia gelatinosa (lamina II) neurons with axons that terminate in deeper dorsal horn laminae (III-V). J Comp Neurol267:172–189

    PubMed  CAS  Google Scholar 

  • Maier SF (1989) Determinants of the nature of environmentally induced hypoalgesia. Behav Neurosci 103:131–143

    PubMed  CAS  Google Scholar 

  • Mantyh PW (1982a) Forebrain projections to the periaqueductal gray in the monkey, with observations in the cat and rat. J Comp NeuroI 206:146–158

    CAS  Google Scholar 

  • Mantyh PW (1982b) The ascending input to the midbrain periaqueductal gray of the primate. J Comp Neurol 211:50–64

    PubMed  CAS  Google Scholar 

  • Mason P, Floeter MK, Fields HL (1990) Somatodendritic morphology of on- and off-cells in the rostral ventromedial medulla. J Comp Neurol 301:23–43

    PubMed  CAS  Google Scholar 

  • Miletic V, Hoffert MJ, Ruda MA, Dubner R, Shigenaga Y (1984) Serotoninergic axonal contacts on identified cat spinal dorsal horn neurons and their correlation with nucleus raphe magnus stimulation. J Comp Neurol 228:129–141

    PubMed  CAS  Google Scholar 

  • Millar J, Williams GV (1989) Effects of iontophoresis of noradrenaline and stimulation of the periaqueductal gray on single-unit activity in the rat superficial dorsal horn. J Comp Neurol 287:119–113

    PubMed  CAS  Google Scholar 

  • Morgan M, Sohn J-H, Liebeskind JC (1989) Stimulation of the periaqueductal gray matter inhibits nociception at the supraspinal as well as spinal level. Brain Res 502:61–66

    PubMed  CAS  Google Scholar 

  • Oliveras JL, Besson JM (1988) Stimulation-produced analgesia in animals: behavioural investigations. Prog Brain Res 77:141–157

    PubMed  CAS  Google Scholar 

  • Oliveras JL, Martin G, Montagne J, Vos B (1990) Single unit activity at ventromedial medulla level in the awake, freely moving rat: effects of noxious heat and light tactile stimuli onto convergent neurons. Brain Res 506:19–30

    PubMed  CAS  Google Scholar 

  • Pan ZZ, Williams JT, Osborne PB (1990) Opioid actions on single nucleus raphe magnus neurons from rat and guinea pig in vitro. J Physiol (Lond) 427:519–532

    CAS  Google Scholar 

  • Price DD, Hayashi H, Dubner R, Ruda MA (1979) Functional relationships between neurons of marginal and substantia gelatinosa layers of primate dorsal horn. J Neurophysiol42:1590–1608

    PubMed  CAS  Google Scholar 

  • Priestley JV, Cuello AC (1989) Ultrastructural and neurochemical analysis of synaptic input to trigeminothalamic projection neurones in lamina I of the rat: a combined immunocytochemical and retrograde labelling study. J Comp Neurol 285:467–486

    PubMed  CAS  Google Scholar 

  • Proudfit HK (1988) Pharmacological evidence for the modulation of nociception by noradrenergic neurons. Prog Brain Res 77:357–370

    PubMed  CAS  Google Scholar 

  • Proudfit HK, Anderson EG (1975) Morphine analgesia: blockade by raphe magnus lesions. Brain Res 98:612–618

    PubMed  CAS  Google Scholar 

  • Rhodes DL, Liebeskind JC (1978) Analgesia from rostral brainstem stimulation in the rat. Brain Res 143:521–532

    PubMed  CAS  Google Scholar 

  • Richardson DE, Akil H (1977) Pain reduction by electrical brain stimulation in man. I. Acute administration of periaqueductal and periventricular sites. II. Chronic self-administration in the periventricular gray matter. J Neurosurg 47:184–194

    PubMed  CAS  Google Scholar 

  • Rogers RJ (1977) Elevation of aversive threshold in rats by intra-amygdaloid injection of morphine sulfate. Pharmacol Biochem Behav 6:385–390

    Google Scholar 

  • Ruda MA (1988) Spinal dorsal horn circuitry involved in the brain stem control of nociception. Prog Brain Res 77:129–140

    PubMed  CAS  Google Scholar 

  • Sakuma Y, Pfaff DW (1980) Convergent effects of lordosis relevant somatosensory and hypothalamic influences on central gray cells in the rat mesencephalon. Exp Neurol70:269–281

    PubMed  CAS  Google Scholar 

  • Schmauss C, Hammond DL, Ochi JW, Yaksh TL (1983) Pharmacological antagonism of the antinociceptive effects of serotonin in the rat spinal cord. Eur J Pharmacol 90:349–357

    PubMed  CAS  Google Scholar 

  • Skagerberg G, Bjorklund A (1985) Topographic principles in the spinal projections of serotonergic and non-serotonergic brainstem neurons in the rat. Neuroscience 15:445–480

    PubMed  CAS  Google Scholar 

  • Todd AJ, McKenzie J (1989) ABA-immunoreactive neurons in the dorsal horn of the rat spinal cord. Neuroscience 31:799–806

    PubMed  CAS  Google Scholar 

  • Todd AJ, Millar J (1983) Antagonism of 5-hydroxytryptamine-evoked excitation in the superficial dorsal horn of the cat spinal cord by methysergide. Neurosci Lett 48:167–170

    Google Scholar 

  • Vanegas H, Barbaro NM, Fields HL (1984) Tail-flick related activity in medullospinal neurons. Brain Res 321:135–141

    PubMed  CAS  Google Scholar 

  • Vasko MR, Pang IH, Vogt M (1984) Involvement of 5-Hydroxytryptaminecontaining neurons in antinociception produced by injection of morphine into nucleus raphe magnus or onto spinal cord. Brain Res 306:341–348

    PubMed  CAS  Google Scholar 

  • Watkins LR, Kinscheck IB, Mayer DJ (1983a) The neural basis of footshock analgesia: the effect of periaqueductal gray lesions and decerebration. Brain Res 276:317–324

    PubMed  CAS  Google Scholar 

  • Watkins LR, Young EG, Kinscheck IB, Mayer DJ (1983b) The neural basis of footshock analgesia: the role of specific ventral medullary nuclei. Brain Res 276:305–315

    PubMed  CAS  Google Scholar 

  • Watson SJ, Akil H, Richard CW III, Barchas JD (1978) Evidence for two separate opiate peptide neuronal systems. Nature 275:226–228

    PubMed  CAS  Google Scholar 

  • Wiklund L, Leger L, Persson M (1981) Monoamine cell distribution in the cat brain stem: a fluorescence histochemical study with quantification of indolaminergic and locus coeruleus cell groups. J Comp Neurol 203:613–647

    PubMed  CAS  Google Scholar 

  • Willcockson WS, Chung JM, Hori Y, Lee KH, Willis WD (1984) Effects of iontophoretically released amino acids and amines on primate spinothalamic tract cells. J Neurosci 4:732–740

    PubMed  CAS  Google Scholar 

  • Willcockson WS, Kim J, Shin HK, Chung JM, Willis WD (1986) Actions of opioids on primate spinothalamic tract neurons. J Neurosci 6:2509–2520

    PubMed  CAS  Google Scholar 

  • Williams JT, Egan TM, North RA (1982) Enkephalin opens potassium channels on mammalian central neurones. Nature 299:74–77

    PubMed  CAS  Google Scholar 

  • Willis WD (1985) The pain system. Karger, Basel

    Google Scholar 

  • Wyon-Maillard M-C, Conseiller C, Besson J-M (1972) Effects of orbital cortex stimulation on dorsal hom intemeurons in the cat spinal cord. Brain Res 46:71–83

    PubMed  CAS  Google Scholar 

  • Xie GX, Han JS, Hollt V (1983) Electroacupuncture analgesia blocked by microinjection of anti-beta-endorphin antiserum into periaqueductal grey of the rabbit. Int J Neurosci 18:287–292

    PubMed  CAS  Google Scholar 

  • Yaksh TL, AI-Rodhan NRF, Jensen TX (1988) Sites of action of opiates in production of analgesia. Prog Brain Res 77:371–394

    PubMed  CAS  Google Scholar 

  • Yeung JC, Rudy RA (1980) Multiplicative interaction between narcotic agonisms expressed at spinal and supraspinal sites of antinociceptive actions as revealed by concurrent injections of morphine. J Pharmacol Exp Ther 215:633–642

    PubMed  CAS  Google Scholar 

  • Yezierski RP, Sorkin LS, Willis WD (1987) Response properties of spinal neurons projecting to midbrain or midbrain-thalamus in the monkey. Brain Research 437:175–170

    Google Scholar 

  • Zorman G, Hentall ID, Adams JE, Fields HL (1981) Naloxone-reversible analgesia produced by microstimulation in the rat medulla. Brain Res 219:137–148

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1993 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fields, H.L. (1993). Brainstem Mechanisms of Pain Modulation: Anatomy and Physiology. In: Herz, A., Akil, H., Simon, E.J. (eds) Opioids II. Handbook of Experimental Pharmacology, vol 104 / 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-77540-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-77540-6_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-77542-0

  • Online ISBN: 978-3-642-77540-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics